
Dynamic Service Placement in 6G Multi-cloud Scenarios

Fatemeh Tabatabaei, Hamzeh Khalili, Manuel Requena, Sarang Kahvazadeh, and Josep Mangues-

Bafalluy

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels, Spain

e-mail: ftabatabaeimehr@cttc.es

ABSTRACT

The rapid development of 6G technology promises to revolutionize wireless communication and bring significant

advancements in various industries. Public Protection and Disaster Relief (PPDR) applications require cutting-edge

communication technology to meet their low latency, high-speed, and bandwidth requirements for effective

decision-making support during emergencies. This paper presents a federated framework for the 5G-EPICENTRE

project that allows various testbeds to federate and share resources for emergency situations. The proposed

federated framework can provide flexible and efficient utilization of resources, enabling more effective PPDR

applications to be connected and utilized. To further enhance the performance of PPDR applications, we propose

a scheduler that optimizes Network Service (NS) placement for Cloud and Multi-access Edge Computing (MEC)

resources to improve the overall performance of PPDR applications. Our approach aims to reduce latency and

efficiently offload services to empower first responders to make critical decisions during emergencies. This

approach is expected to improve the overall performance of the PPDR applications and empower first responders

to make critical decisions in emergency situations.

Keywords: 6G, autonomous network management, multi-cloud, federation, Karmada, scheduler

1. INTRODUCTION

In recent years, the growth in data traffic has created a need for faster and more reliable wireless communication

technologies. While 5G technology is still being deployed worldwide, researchers and industry experts are already

looking towards the future of wireless communication with 6G technology [1]. 6G promises to offer

unprecedented data transfer rates, ultra-low latency, and enhanced connectivity, enabling new applications and

services that are not possible with current wireless communication standards [2].

One sector that can greatly benefit from 6G technology is the public protection and disaster relief (PPDR)

sector. PPDR agencies need high-speed, reliable communication networks to effectively respond to emergencies

and natural disasters. However, existing communication networks [3] can often be disrupted or overloaded during

critical situations, hindering the ability of PPDR agencies to respond quickly and efficiently. With the

implementation of 6G technology, PPDR agencies can benefit from advanced technologies such as real-time

situational awareness, augmented reality, and autonomous systems, which can enable them to respond more

efficiently and effectively. Deploying multi-domain network services in a 6G scenario requires advanced

solutions, such as service federation [6]. Federation is the process of orchestrating services or resources across

several domains in a multi-domain scenario.

The Horizon 2020 5G-EPICENTRE project [5] defines an architecture of the experimentation facilities

provided by different partners of the project, with support for cross-domain and cross-testbed experiments. In

addition, new technological evolution is required to pave the way for endless services tailored to specific verticals

like use cases for PPDR [7]. In this direction, AI/ML approach like optimization techniques can be helpful for

service placement and for efficiently offloading and directing traffic between the Cloud and Multi-access Edge

Computing (MEC) resources available [7]. Therefore, in this paper, we describe a cross-testbed federation

environment and a new scheduler designed in federation to consider the resources available at the network edge

and across multiple geographically distributed testbed infrastructures, providing interconnectivity among them,

which is crucial for effective communication and coordination during emergency situations. The paper is

organized as follows: Section 2 overviews the Karmada architecture. Section 3 describes cross-testbed federation

approach, Section 4 presents the novel scheduler framework. Section 5 concludes the paper.

2. BACKGROUND

Karmada [8] is an open-source, multi-cloud platform that enables Kubernetes orchestration by utilizing

Kubernetes-native APIs and advanced scheduling capabilities. It offers automation for managing multi-cluster

applications in both hybrid and multi-cloud scenarios, with features such as centralized multi-cloud management,

high availability, failure recovery, and traffic scheduling. Karmada's architecture is similar to that of a single

Kubernetes cluster, with a control plane, API server, scheduler, and controllers. The Karmada Control Plane is

presented in Figure 1as part of the 5G-EPICENTRE architecture, and it consists of multiple components, including

the API server, Karmada cluster controllers, Karmada scheduler, and synchronization modes. Karmada features

the following fundamental components:

• The API server of the control plane provides Kubernetes-native APIs, policy APIs, and persist metadata

in ETCD.

• Karmada cluster controllers are the core component of the Karmada system. They are responsible for

managing the lifecycle of a deployed service from submission to final deployment, maintaining the

federated cluster, and managing objects for different purposes, such as maintaining the cluster status,

workload, and policies.

• The Karmada scheduler [9] provides the interface that defines the fundamental functionalities of

scheduling a deployment. Currently, it supports cluster affinity, cluster locality, API enablement, taint

toleration, and spread constraints.

• Karmada supports two modes of coordination (push and pull) for a given member cluster. It maintains

the member cluster directly so that all objects and namespaces are created inside the Karmada control

plane. Alternatively, Karmada can create an agent server in the member cluster's workspace as the

delegate of the Karmada API server [8].

3. CROSS-TESTBED FEDERATION ARCHITECTURE

The idea of cross-testbed federation [10] is conceptualized in Figure 1, and it enables multi-clustered Kubernetes

(K8s) orchestration across different domains, allowing testbed federation [10]. K8s-based orchestrators manage

and provide access to service resources for individual testbed containerized workloads, facilitating multi-clustered

K8s orchestration across different domains.

To achieve this, Karmada is used, enabling cloud-native applications to run across multiple K8s clusters without

any changes to the application. Karmada provides a centralized control plane for application deployment and

resource management on multiple clusters, known as member clusters. Karmada also allows the federation of any

K8s resources in a multi-cluster environment. Initially, Karmada provides a cluster federation across different

testbed infrastructures by creating a new abstraction of a federation layer. However, additional functionalities can

be developed for end-to-end service across 5G-EPICENTRE testbed infrastructures to meet the architecture

requirements of 5G-EPICENTRE.

To integrate the individual testbeds into the 5G-EPICENTRE federation and facilitate system communication

mechanisms, the Message Queuing Telemetry Transport (MQTT) protocol is deployed for asynchronous

communication using RabbitMQ. The components of 5G-EPICENTRE can communicate in both synchronous and

asynchronous modes [11].

PPDR user

Portal/NBI

Exp coordinator

schedulerAPI server

Karmada control plane

subscribe to

topic

offer network app catalog

build or select a network app

deployment.yaml

create topic and publish

metadata

fetch

metrics
Cluster

controller
Policy

controller

Binding

controller
Execution

controller

Kubernetes control plane

scheduler

API server

Prometheus

Publisher

request via

client-API

platform monitoring

Configure/update cluster info

Figure 1: 5G-EPICENTRE Architecture.

At a high level, the workflow for managing the service involves several key modules, with Karmada serving as

the cross-testbed container orchestrator that enables seamless management of running cloud-native applications

across different infrastructures. In particular, the first three modules in Figure 1 are focused on developing a

solution that enables the connection between PPDR service providers and the 5G-EPICENTRE platform, as well

as between the portal and cross-testbed federation. Once a service is submitted, the binding controller interacts

with the Karmada API server to create the initial binding object based on the policies defined by the user. These

policies indicate the strategies considered for propagating the pods across clusters. The Karmada scheduler focuses

on fault-domain and includes a nested function to check the validity and reliability of member clusters. It has an

in-tree plugin structure that separates the core process from the sub-components. In general, a pluggable scheduler

framework allows defining sub-functions of different strategies and controls policies that affect the scheduling

behavior. As we outlined in the introduction, the scheduler should be able to fulfill the required KPIs from the use

cases. To achieve this aim, the scheduler fetches the required metrics by connecting to a publisher that is

configured to use the Message Queuing Telemetry Transport (MQTT) protocol or by using a client API that

exposes the Kubernetes cluster API server. Moreover, the publisher integrates with Prometheus, which allows

monitoring service metrics from the infrastructure. Once the scheduler indicates the target cluster, the execution

controller places the workload in the corresponding cluster namespace. After this step, the Kubernetes API server

is triggered to schedule the pod on the most appropriate node. Note that for this project, we have also made

contributions to the Kubernetes scheduler.
util

cluster policy work pluginscore selectorapi server

APIs package scheduler

watch

receive event signal

run FilterPlugin

and/or

ScorePlugin

patch and bind the

workload

call sub-

functions

new scheduler

instantiation

fetch

registered object

cache

system status
fetch

binding obj

fetch

placement

fetch

cluster obj

assignReplicas

├── apienablement

├── clusteraffinity

├── clusterlocality

├── spreadconstraint

├── tainttoleration

├── clusterResource

│ ├── cluster_Resource.go

subscribe

to MQTT

expose member

cluster API-server

run clusterResource

functions

Figure 2: service lifecycle in Karmada’s scheduler.

4. CUSTOMIZED SCHEDULING FRAMEWORK

To achieve the goals outlined in the introduction, we designed and experimentally developed a new plugin, called

clusterResource, which is attached to the standard scheduler in the Karmada system. The plugin guarantees the

fulfillment of required KPIs by computing the optimal placement for a given service. Although the new plugin is

decoupled from the service and infrastructure, it accesses the necessary metrics required for scheduling the PPDR

service, mainly latency. The clusterResource plugin, like other native plugins in the Karmada scheduler, executes

some key tasks, which are depicted in blue in Figure 2, and the core contributions are implemented in the plugin

and selector modules.

The scheduler uses a watch API as a client to the Karmada API server and is notified about changes in the

resources (see Figure 2). Once the scheduler is triggered, it creates a new instance of the scheduler struct and takes

two parameters: i) cache and ii) registry, which are the instances of Cache interface and runtime Registry interface,

respectively. The scheduler then calls Filter Plugin and/or Score Plugin, depending on the defined policies or which

ones are enabled. clusterResource only uses FilterPlugin interface. To provide context before diving into the details,

we will first explain the process of adding a new plugin to Karmada's scheduler. The clusterResource template is

similar to the native plugins template as is marked with star in Figure 2. Once the template is created, the

FilterPlugin is added to fix the arguments required for scheduling process. Afterward, the new template should be

registered in the list of available plugin inside the main implementation of karmada scheduler so that it will then

become a part of the scheduling framework, making it available once a workload is created.

The clusterResource plugin uses a client API to expose the K8s’ API server to query the allocatable resource of

each member cluster. On the other side, it subscribes to a specific topic published in MQTT to fetch service metric.

Let’s assume that the available resource of a cluster c∈C is a summary of node metric, and E2E latency is aggregated

internal latency along the service chaining plus the external latency from the ingress node to the end user (EU). The

clusterResource algorithm employs a linear programming (LP) approach to solve the placement problem, which

can minimize the average latency in the long term while not exceeding the metrics limitation of constraints. Since

the service placement is categorized as a nondeterministic polynomial (NP)-hard problem, when the size of input

is scaling up, the complexity of the problem also increases exponentially. To avoid this complexity, we proposed a

combination of a local search algorithm and an analysis function to consider the long-term behavior of a cluster. In

this way, the cluster ctarget with the best condition to host the service is selected.

Afterward, the assignReplica function specifies the target clusters for a given object based on the replica

scheduling strategy. Note that if no cluster is found at this step, the event triggers the de-scheduling module, which

is a separate package in the Karmada project. Finally, the Binding method calls sub-methods based on the type of

placement policy to patch the placement and the list of ResourceBinding objects after it has been scheduled.

5. CONCLUSIONS

Karmada allows the federation of multiple K8s clusters across different testbed infrastructure of the project and

allows the centralized Karmada controller to coordinate multiple clusters and applications that can be deployed in

multi-cluster environments and different domains. In addition, we proposed a solution to solve the service

placement in EC-enabled 6G networks, considering the latency and computational resources that makes it suitable

to solve the stringent requirements of PPDR use cases but can be of general application.

ACKNOWLEDGEMENTS

This work has been funded from the European Union’s Horizon 2020 research and innovation programme under

grant agreement No. 101016521 5G-EPICENTRE.

We would like to acknowledge Hongcai Ren and Karmada community for adding the capability to extend the

built-in plugin in the scheduler. Their willingness to help us with our specific needs was instrumental in the

successful completion of this work.

REFERENCES

[1] Zhang, Y., Jiang, T., Feng, G., Zhang, Y., Wang, W., & You, X. (2021). An overview of 6G research progress and prospect.

IEEE Transactions on Vehicular Technology, 70(3), 2908-2926. doi: 10.1109/TVT.2021.3063991.

[2] T. Taleb, Z. Pang, J. Li, et al., "6G Wireless Networks: Vision, Requirements and Challenges," IEEE Network, vol. 34,

no. 3, pp. 487-493, May/June 2020.

[3] F. Boccardi, R. W. Heath Jr, A. Lozano, et al., “Five disruptive technology directions for 5G,” IEEE Communications

Magazine, vol. 52, no. 2, pp. 74-80, February 2014.

[4] A. S. K. Pathan, et al., "Multi-domain federation of 5G and cloud services for PPDR," Proceedings of the 2020 IEEE 3rd

5G World Forum (5GWF), pp. 219-224, September 2020.

[5] A. Dimitrios, et al. "Unification architecture of cross-site 5G testbed resources for PPDR verticals." 2021 IEEE

International Mediterranean Conference on Communications and Networking (MeditCom). IEEE, 2021.

[6] J. Baranda Hortiguela et al., "Realizing the Network Service Federation Vision: Enabling Automated Multidomain

Orchestration of Network Services," in IEEE Vehicular Technology Magazine, vol. 15, no. 2, pp. 48-57, June 2020, doi:

10.1109/MVT.2020.2979558.

[7] C. R. de Mendoza, B. Bakhshi, E. Zeydan and J. Mangues-Bafalluy, "Near Optimal VNF Placement in Edge-Enabled 6G

Networks," 2022 25th Conference on Innovation in Clouds, Internet and Networks (ICIN), Paris, France, 2022, pp. 136-

140, doi: 10.1109/ICIN53892.2022.9758116

[8] Karmada: Open, Multi-Cloud, Multi-Cluster Kubernetes Orchestration. available at: https://karmada.io/

[9] Karmada Scheduler. Retrieved April 19, 2023. Available at: https://karmada.io/docs/karmada-scheduler/.

[10] 5G-EPICENTRE, “D4.4 5G-EPICENTRE Experimentation facility preliminary version”, June 2022.

[11] 5G-EPICENTRE, “D1.1 5G-EPICENTRE experimentation scenarios preliminary version”, June 2021.

https://karmada.io/
https://karmada/

