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Executive summary 

This document presents the 5G-EPICENTRE deliverable D2.7 “Cloud-native security intermediate version”, cor-

responding to Task T2.6 “Attack surface decrease and network edge access control" under Work Package 2 

“Cloud-native 5G NFV”. The main focus of T2.6 activities (and consequently, of the present deliverable) has been 

to produce a security framework able to provide security for any Network Application executing in a Kubernetes 

environment. Therefore, this document presents the evolution and details of the latest version of the Holistic 

Security and Privacy Framework (HSPF), which corresponds to the security framework being developed under 

the scope of 5G-EPICENTRE. As part of the framework design, security standards and guidelines are presented, 

with special focus on the ones related to 5G technologies. 

As mentioned, the evolution of the HSPF as of M28 is presented in this document, as well as the foreseen major 

milestones. An additional highlight is given to the latest HSPF implementation architecture, with the presence of 

the most relevant aspects related to its development, validation and deployment.   
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1 Introduction 

The objective of this document is to specify the Holistic Security and Privacy Framework (HSPF), an oriented 

cloud-native security framework designed to bring protection for any Network Application deployed in a Kuber-

netes environment. In addition, as part of the design of this framework, several security concepts and standards 

have been identified, which are also reported in this deliverable.  

The challenges posed by present-day Information and Technology (IT) markets demand the implementation of 

distributed and composable systems from organisations, which are being moved outside of their physical bound-

aries. To that extent, the cloud is contributing to the simplification of their operations and removing much of the 

burden efforts involved in managing and deploying traditional server infrastructure. Moreover, organizations are 

leveraging automation capabilities from software-driven infrastructure models, which has resulted in a cloud-

native approach. 

The focus on a cloud-native approach for applications has led to an increased attack surface that requires the 

adoption of security measures throughout the software development lifecycle, from the moment the applica-

tions are designed, until the moment they are deployed and operated in production environments. Such an ap-

proach is referred to as Security-By-Design (SBD) and is one of the many security concepts considered while 

developing any application within the 5G-EPICENTRE paradigm. 

This deliverable is structured as follows: Section 1.3 presents 5G security-related aspects collected during the 

design phase of the HSPF, including an overview of the 5G security challenges, and how the 5G architecture 

considers those aspects. Section 3 presents the HSPF, with special emphasis on its evolution throughout the 

project timeline; its latest implementation and respective validation activities; how it evolved to a Network Ap-

plication; and what are the major activities foreseen for the remaining duration of Task 2.6. Finally, in Section 4, 

the overall conclusions of the deliverable are presented.  

The document is complemented with four Annexes that cover different aspects gathered throughout the design 

and early stages of the HSPF, as well as some preliminary validation activities conducted with the first version of 

the framework. In detail:  

(i) Annex I: Cloud-native security contains a set of concepts and standards about cloud-native security, 

in addition to specific cloud-native security specifications.  

(ii) Annex II: Proposed Security and Privacy Framework – Background details the tools and security 

concepts behind the security framework.  

(iii) Annex III: Security Framework – Initial Experiments describes a set of preliminary experiments con-

ducted to explore different mechanisms offered by the technologies in use, and to conduct a first 

validation of the initial version of the HSPF.  

(iv) Annex IV: HSPF Evolution provides complementary information regarding the evolution of the HSPF. 

(v) Annex V: Latest HSPF implementation architecture presents additional information about the latest 

deployment and validation activities conducted with the latest HSPF implementation architecture. 

1.1 5G-EPICENTRE Holistic Security and Privacy Framework 

The overall 5G-EPICENTRE architecture is segmented into a multi-layered approach (Frontend, Backend, Feder-

ation, and Infrastructure layers), as defined in Deliverable D1.4 “Experimentation requirements and architecture 
specification final version”. The Frontend layer includes the processes supporting the interaction between the 

platform and Public Protection and Disaster Relief (PPDR) solution providers. The Backend layer comprises the 

functional components of the platform, while the Federation layer comprehends the cross-testbed orchestration 

of network services and resources to ensure an optimal experiment environment. Finally, the 5G testbed infra-

structural elements of each of the federated testbeds compose the infrastructure layer. Orthogonal to those 
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layers, and to address the security challenges of the envisioned (and highly complex) 5G scenarios, an HSPF was 

also proposed to complement the architecture’s security viewpoint. 

As part of the scope of the 5G-EPICENTRE project, a security framework will provide the capabilities addressing 

the enforcement policies, managing the access control, and assuring the proper security practices across the 5G- 

EPICENTRE architecture. The proposed solution is the HSPF, a framework that is transversal to all conceptual 

layers of the 5G-EPICENTRE architecture, addressing different security requirements for each of them.  

1.2 Mapping of project’s outputs 

The purpose of this section is to map 5G-EPICENTRE Grant Agreement (GA) commitments within the formal Task 

description, against the project’s respective outputs and work performed. 

Table 1: Adherence to 5G-EPICENTRE’s GA Task’s Description 

5G-EPICENTRE Task Respective Document Chapters Justification 

T2.6: Attack surface decrease and 

network edge access control 

“This Task aims to configure secure 
network policies to deal with the in-

creased attack surface resulting from 

the shift toward edge VNF container-

ization, and the inevitably larger net-

work size. This will be achieved 

through minimal host Operating Sys-

tem (OS) distribution, ensuring that 

host management tools are executed 

in isolated management containers. 

Furthermore, OS-level security 

measures, along with per-program 

restricted access profiles will be de-

ployed”. 

Annex I: Cloud-native security During the design phase of the 

framework, it was necessary to col-

lect several concepts and standards. 

As a result, the Standards and best 

practices Section presents the secu-

rity standards and best practices in 

cloud-native environments, while  

the Cloud-native security specifica-

tions Section describes the specifica-

tions that a cloud-native security sys-

tem must contain. Further, Section 

Cloud-native security specifications 

presents the specifications needed 

into a cloud-native security system. 

(e.g., the concept of namespaces 

and network policies). 

T2.6: Attack surface decrease and 

network edge access control 

“[…] Concerning Access Control, the 
5G-EPICENTRE architecture (T1.3) 

should be flexible enough to enable 

the network edge to be autonomous 

– to some extent, depending on the 

security requirements - in terms of de-

cisions to grant access or not. There-

fore, specifications shall be put into 

place to enable the Policy Enforce-

ment Points deployed at the edge to 

carry out the decision request to an 

always reachable Policy Decision 

Point”. 

2 – 5G security and attack surface Section 2.3 addresses the 5G Secu-

rity Architecture, where an overview 

of the authentication mechanisms of 

5G networks is given. 

Annex II: Proposed Security and 

Privacy Framework – Background 

The Technologies and tools Section 

presents the technologies that may 

be used to configure a distributed 

cloud-native network system, 

namely the ones needed to enforce 

the required security policies.  
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T2.6: Attack surface decrease and 

network edge access control 

“[…] If pure IoT authentication and 

authorization is concerned, alterna-

tive patterns might be deployed to 

ensure a fair-enough security of the 

remote autonomous devices de-

ployed on the field, which still satis-

fies critical communications con-

straints”. 

Annex I: Cloud-native security 

 

The Standards and best practices 

Section presents the security stand-

ards and best practices in cloud-na-

tive environments. The authentica-

tion and authorization mechanisms 

include this diversity of standards. 

2 – 5G security and attack surface Section 2.3 addresses the 5G Secu-

rity Architecture, where the require-

ments of Quality of Service for PPDR 

applications are one of the major 

concerns. 

T2.6: Attack surface decrease and 

network edge access control 

“[…] Finally, this Task will define 

proper resource guarantees while de-

ploying co-located instances of con-

tainerized VNFs (CNFs), so as to reap 

benefits in terms of VNF performance 

and agility gained due to the weaker-

than-traditional-VM isolation, while 

at the same time neutralizing any 

chances of there being interference 

between co-located VNFs”. 

3 – Holistic Security and Privacy 

Framework 

Section 3.1 presents the security 

framework evolution from the con-

ceptual architecture up to the cur-

rent implementation, which is fur-

ther detailed in Section 3.2. 

Section 3.5 presents the validation 

activities conducted so far, while 

Section 3.6 presents a Roadmap 

highlighting the major activities for 

the remaining period of T2.6. 

 

 

1.3 Updates since the initial deliverable version 

The present document is the second version of deliverable D2.1. Table 2 lists all updates introduced in this latest 

version of the deliverable, describing what content is new or updated when comparing to the previous version. 

Table 2: Deliverable updates since D2.1 

Chapter Updates since D2.1 

Section 1 This Section has been updated to reflect the recent document structure. 

Section 2 
There are no significant updates to this Section since D2.1. It has been kept, consider-

ing its importance to this deliverable. 

Section 3 

Section 3 presents a new structure when compared to D2.1. This Section starts by 

summarizing the evolution of the HSPF throughout the lifetime of Task 2.6. After-

wards, a complete description of the latest implementation work is provided, followed 

by an explanation on how this framework may be deployed, as well as the evolution 

of the HSPF up to Network Application approach. Finally, the HSPF validation activities 

are described, concluded by a Roadmap containing the key future milestones. 

The content initially present in Section 4 of D2.1 is now part of this Section. 
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Section 4 Highlights the conclusions achieved from the updated work in the present deliverable.  

Annex I - III All three Annexes present the same content as in D2.1. 

Annex IV: HSPF Evo-

lution 

Presents additional information about the evolution of the HSPF, briefly described in 

Section 3.1. 

Annex V: Latest HSPF 

implementation ar-

chitecture 

This Annex provides further information on different topics related with the latest 

HSPF implementation, namely the specification of the Report Interface, validation ac-

tivities and the first HSPF deployment into a 5G-EPICENTRE testbed as a Network Ap-

plication. 
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2 5G security and attack surface 

This Section provides an overview of the 5G security challenges, and a review of the methodologies discussed in 

the literature to decrease the attack surface in 5G scenarios.  

This section starts by introducing key information regarding the 5G architecture and related to the solutions 

proposed in this document. Important security challenges brought by 5G are then overviewed and finally, the 

5G security architecture is analysed from the 5G-EPICENTRE Use Cases (UCs)’ perspective. 

2.1 5G architecture 

In the 5G Core (5GC), key features such as Control and User Plane Separation (CUPS); Service-Based Architecture 

(SBA); Network Slicing; and Access Agnostic are included. 

The SBA represents an architectural concept defined by the 5G standards. The SBA enables quick and easy inte-

gration of new network services and puts the telecommunication network design approach closer to the IT net-

works. Network Functions (NFs) can be virtualised and provide their services to other NFs, or third-party “verti-

cals”, using the standard HTTP/2 Internet protocol and Representational State Transfer (REST) API-based Service-

Based Interfaces (SBIs). 

The Network Repository Function (NRF) is one of the key components of the SBA, maintaining an updated repos-

itory of all the 5G elements available in the operator’s network, along with their services provided by elements 

in the 5GC, which can be instantiated, scaled, and terminated. Network function management allows NF in-

stances in the same network to register, update and de-register their profile in the NRF. Network function dis-

covery allows an NF to discover the services of other NF instances in the same network. It also supports one NRF 

querying an NRF in another network on behalf of another NF. Finally, the OAuth2 authentication service is where 

the NRF issues a token to the requesting NF, which the latter one can use to prove that it is authorised to con-

sume the service of another NF. 

2.2 5G security challenges 

The 5G SBA offers many security features which include lessons learned from previous generations of network 

technologies. On the other hand, the 5G SBA is a completely new network concept that opens up towards new 

customers and services. These new players lead to new security challenges. 

Network migration requires several security considerations, considering that mobile core network attackers use 

whichever protocol and network generation gives them the result they desire. In a mixed architecture, where 

some elements are 4G and others 5G, interworking functions will enable communications across generations, 

which will require specific approaches in terms of security. With all the new NFs and services in 5G, roaming and 

legacy interactions will become quite complex. 

Slicing opens the door for new customers directly into the core network, increasing the attack surface over the 

previous generations. From a security standpoint, it should be noticed that NF profile information may also in-

clude dynamic load information.  

2.3 5G security architecture  

An extremely high volume of connections is expected during the next five years, namely, somewhere near 21 

billion Internet of Things (IoT) devices [1]. Therefore, 5G networks will need to support an extremely high number 

of simultaneous connections. Enabling use cases, like high bandwidth video streaming and mission critical IoT 

solutions, will require ultra-low latency and Quality of Service (QoS), among others. To support such a wide va-

riety of use cases, network signalling complexity and traffic overload will have to be handled by the 5G networks. 



D2.7 Cloud-native security intermediate version  

   

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 18 

To address the 5G signalling complexity, a signalling strategy should ensure that networks are robust enough to 

come in line with the needs of businesses. Operators are required to support 2G, 3G, 4G, and 5G for at least the 

next decade, adding more signalling complexity, interworking, and interoperability issues [2].  

Moreover, with 5G touching every aspect of life with its broad set of use cases, the potential security threat is 

expected to increase. Operators need to invest heavily in securing their 5G networks before they can touch upon 

use cases in support of business and mission-critical industry vertical applications, such as healthcare and bank-

ing. Deploying a robust signalling and routing framework can help operators tackle the most serious issues. 

One very important stage is the inter-Public Land Mobile Network (PLMN) communication, which typically con-

tains highly confidential user information. The Secure Edge Protection Proxy (SEPP) sits at the perimeter of the 

PLMN, enabling secured inter-network function communication across the PLMN network. It maintains the con-

fidentiality and integrity of the 5GC. 

NF and NRF mutually authenticate each other using Transport Layer Security (TLS) or Internet Protocol Security 

(IPsec) at the lower layer of the Open Systems Interconnection (OSI) stack model, and the NRF may provide 

authentication and authorisation to NFs to establish secure communication between each other. 

Authorisation to access services is an important security control, contributing to avoiding attacks coming from 

the Interconnection Networks (IPX), so authorisation works across PLMN boundaries should also be considered, 

including the ones between different 5G networks. 

2.3.1 5G security features 

The increasing adoption of 5G services will move considerable new business workflows that, in turn, will create 

new opportunities for fraudulent activity. As a result, new and traditional threats and vulnerabilities will need to 

be managed in the 5G ecosystem.  

5G has introduced several features in order to improve its security, such as the following ones: 

 The implementation of a SEPP, which takes the responsibility to protect the network from attacks arriv-

ing from the roaming network. 

 The unification of different 5G access protocols and devices into a framework of authentication mecha-

nisms. 

 Introduction of the NRF authorisation function into the network architecture. 

 Protection of user privacy on the air interface. 

 Extended home network control for roaming users. 

The important security connections to be protected are the following ones: 

 Network and the interconnection network. 

 Network interconnection between slices. 

 Shared and non-shared NFs. 

 Dedicated NFs and the shared infrastructure. 

 Elements of legacy generations such as 2G, 3G and 4G NFs. 

Security controls need to be applied at multiple points in the network and across multiple layers. Enabling packet 

capture and the ability to implement security at container ingress is critical to ensure that bad traffic stays out 

of a service provider’s network. Enabling encryption is also fundamental in a 5G network security offering. 

2.3.2 Security entities in the 5G Core network  

The 5G system architecture introduces the following security entities in the 5GC network: Authentication Server 

Function (AUSF), Authentication Credential Repository and Processing Function (ARPF), Subscription Identifier 
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De-Concealing Function (SIDF) and Security Anchor Function forms (SEAF). The role of these entities is presented 

below [3]: 

 AUSF supports authentication for the 3GPP access and untrusted non-3GPP access. It terminates re-

quests from the SEAF and interacts with the ARPF. 

 ARPF stores permanent secrets (K) as the base of short tier, keys, executes cryptographic algorithms and 

creates authentication vectors. 

 SIDF de-conceals the Subscription Permanent Identifier (SUPI) from the Subscriber Concealed Identifier 

(SUCI). 

 SEAF is an outcome of the primary authentication, the unified, common anchor key (KSEAF) for all the 

access scenarios. It provides authentication functionalities through the Access and Mobility Manage-

ment Function (AMF) in the serving network. The SEAF shall support primary authentication using the 

SUCI.  

5GC provides security requirements on the User Equipment (UE), gNodeB (gNB), AMF, Unified Data Management 

(UDM), SEAF and AUSF. The core network security comprises trust boundaries, aligned with divisions defined by 

network operators in order to divide their networks into trust zones. The messages that transpose those bound-

aries should follow NF service-based discovery, and registration shall support confidentiality, integrity, and re-

play protection. NRF shall be able to ensure that NF discovery and registration requests are authorised. The NRF 

and NFs that are requesting service shall be mutually authenticated.  

The security domains are described next: 

 Network access security is the domain providing a set of security characteristics that enable a UE to 

securely authenticate and access network services (including 3GPP and non-3GPP access), as well as 

guarding against attacks on radio interfaces. It also comprises the transfer of security context from serv-

ing network to access network for access security. 

 Network domain security provides a set of security features that allow network nodes to exchange sig-

nalling and user plane data securely. 

 User domain security provides a collection of security elements that protect a user’s access to mobile 

devices. 

 Application domain security includes a set of security features that allow user and provider domain apps 

to securely exchange messages.  

 SBA architecture comprises a set of security capabilities that allow the SBA architecture’s NFs to securely 

connect both within the serving network domain and with other network domains. NF registration, dis-

covery, and authorisation security aspects as well as protection for service-based interfaces are exam-

ples of such capabilities.  

 Visibility and configuration comprise a set of features that allow the user to know whether a security 

feature is active or not. 

2.3.3 Authentication and authorisation in 5G systems 

The 5G system shall satisfy the following authentication and authorisation requirements [3]: 

 Subscription authentication: In the process of UE and network authentication and key agreement, the 

serving network must authenticate the SUPI. 

 Serving network authentication: The UE must use implicit key authentication to verify the serving net-

work identification. 

 UE authorisation: The UE will be authorised by the serving network using the subscription profile pro-

vided by the home network. The authenticated SUPI is used for UE authorisation. 
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 Serving network authorisation by the home network: The UE must be certain that it is connected to a 

serving network that has been permitted by the home network to offer services to the UE. This authori-

sation is “implicit” in the sense that a successful authentication and key agreement run implies it. 

 Access network authorisation: It must be assured that the UE is connected to an access network that 

has been permitted by the serving network to offer services to the UE. This authorisation is “implicit” in 

the sense that it is indicated by successful access network security establishment. This authorisation for 

access networks applies to all forms of access networks. 

 Unauthenticated Emergency Services: 5G technology offers unauthenticated access for emergency ser-

vices to meet legal requirements in some places. This feature will not be supported by serving networks 

in areas where unauthenticated emergency services are prohibited. 

Impersonating devices can be used to launch Denial of Service (DoS) attacks, but that’s not all they can do. They 

can also utilise their trusted network node status to launch “man in the middle” attacks, in which they deliver 

malicious commands to connected devices. 

One type of attack drives devices to “bid down” to lower-quality network protocols, resulting in a drop in service 

quality. This might be a low-key, yet devastating attack on business networks. An attacker could attempt a bid-

ding down attack by making the UE and the network entities respectively believe that the other side does not 

support a security feature, even when both sides support that security feature. It shall be ensured that a bidding 

down attack, in the above sense, can be prevented. 

2.3.4 Service Communications Proxy 

Despite the unprecedented benefits for operators, the 5G architecture is not yet fully equipped to deal with 

some of the major challenges that come with raised signalling traffic such as the following: 

 Routing and optimisation. 

 Traffic management. 

 Robustness scalability and security. 

 Network visibility. 

 Core security with authorisation and authentication. 

Furthermore, classical in-depth network security approaches, such as perimeter firewalls cannot be easily ap-

plied to Cloud-native scenarios, such as the ones envisioned by 5G-EPICENTRE container-based approaches. 

These require finer control regarding the network communications between all the different containers. Service 

mesh is a Cloud-native approach to support different security capabilities, including logging of API traffic, ob-

servability tagging, network traffic encryption, authentication, and authorization. Beyond the centralized man-

agement of the policies, it can also be used to support policy enforcement between different edge/cloud net-

work traffic in Cloud-native 5G scenarios. The service mesh manages the communication between the services 

from the individual context to an infrastructure layer. Therefore, service mesh is introduced into the application 

as a set of network proxies. The requests are routed between microservices using proxies in their own infrastruc-

ture layer. The proxies implementing the service mesh are called sidecars, because they are run decoupled in 

parallel from each service. The service mesh does not introduce functionalities to the application’s execution 

environment. 

The adoption of a service mesh in the 5GC could represent a solution to the aforementioned challenges, but 

service meshes are not aware of 5G. The Service Communication Proxy (SCP), recently included in the 5G archi-

tecture as an optional component to help the SBA, addresses this problem, by incorporating 5G awareness into 

the service mesh and by developing a secure 5GC signalling architecture that enables 5GC network routing con-

trol, robustness, and observability. The SCP focuses on network internal communication to facilitate the NF in-

stallation process.  
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The SCP performs delegated discovery in the form of an internal register and controller service, and it also im-

plements an individual Service Agent (SA) for each NF. Such an approach enables indirect communications be-

tween each 5GC component in the SBA. This SA acts as a sidecar in service mesh implementations and supports 

its application to many use cases. The SA performs critical tasks that are peripheral to the primary role that an 

NF was designed to perform. 

All top-tier service providers can use a cloud-native infrastructure solution to provide visibility, control, security, 

and scale for 5G network deployments. From both the core and edge computing standpoints, this approach can 

help reduce costs and complexity while constructing and operating a 5G network. 

2.3.5 Mutual authentication 

The authentication mechanisms between the Network Exposure Function (NEF) and an Application Function 

(AF), located outside the 3GPP operator domain, rely on mutual authentication based on client and server cer-

tificates performed between the NEF and AF using TLS. TLS provides integrity, replay and confidentiality protec-

tion for the interface between the NEF and the AF. The support of TLS is mandatory. 

After the authentication, the NEF determines whether the AF is authorised to send requests for the 3GPP net-

work entity. The NEF shall authorise the requests from the AF using an OAuth-based authorisation mechanism. 

2.3.6 NEF security requirements 

The NEF supports external exposure of capabilities of NFs to AFs. The interface between the NEF and the AF shall 

fulfil the following requirements: 

 Integrity, replay and confidentiality protection for communication between the NEF and AF shall be sup-

ported. 

 Mutual authentication between the NEF and AF shall be supported. 

 Internal 5GC information, such as Data Networks Name (DNN), Single Network Slice Selection Assistance 

Information (S-NSSAI), etc., shall not be sent outside the 3GPP operator domain. 

 The SUPI shall not be sent outside the 3GPP operator domain by the NEF. 

The NEF shall be able to determine whether the AF is authorised to interact with the relevant NFs.  

As specified in the latest 5G-PPP Software Network Working Group White Paper [4], the development of Network 

Applications (such as those contemplated in the 5G-EPICENTRE project’s UCs) aims at simplifying both the im-

plementation and the deployment of vertical systems over the 5GC network. For businesses to create and deploy 

such applications, operators need to securely expose their 5G network services to their developers and third-

party developers. The NEF acts as a centralised point for service exposure and plays a key role in authorising all 

access requests originating from outside the 3GPP network to enable cellular IoT, non-IoT, edge computing and 

API gateway use cases for operators. 

2.3.7 Authentication and authorisation between NFs 

To prevent injection, or spoofing of UP traffic over N9, it is recommended to use a common firewall that can 

correlate HTTP/2 methods and GTP-U ones to bind and filter out any malicious traffic on N9. The use of a com-

mon firewall may place other implementation restrictions (e.g., co-location of the Session Management Function 

[SMF], SEPP and User Plane Function [UPF]) aiming to achieve a higher security level in the interactions among 

different NFs. 

2.3.8 Authorisation of NF service access 

The authorisation framework uses the OAuth 2.0 framework. Access tokens are JavaScript Object Notation 

(JSON) Web Tokens and are secured with digital signatures, or Message Authentication Codes based on the JSON 
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Web Signature (JWS). Recently, a service mesh has started to be attained by different approaches aiming to 

address a different set of security mechanisms for the 5GC [5]. The service mesh makes this interesting because 

the 5G components of SBI generate HTTP2 traffic, and thus they can be treated like any other HTTP application, 

including service routing, circuit-breaking, etc. The only exception to this is the UPF, which only uses GPRS Tun-

nelling Protocol User Plane (GTP-U) and Packet Forwarding Control Protocol (PFCP).  

As defined in IETF RFC 6749 [6], all NFs and the NRF must support the OAuth 2.0 authorisation mechanism with 

the “Client Credentials” grant type. 

The NRF will serve as the authorisation server, issuing access tokens to NF service consumers so they can use the 

NF service providers’ services. If an NF gets an OAuth 2.0 authorisation token in the “Authorisation” HTTP request 

header field, the NF must validate the access token, its validity, and access scope before granting access to the 

requested resource. 

2.4 Attack surface in 5G 

The latest advances of 5G technologies and concepts such as the “softwarisation” and virtual network functions 

(VNFs); and openness to their part development, present a more challenging scenario from an orchestration 

standpoint. Inevitably, from a security standpoint, this also means an increased attack surface, and new chal-

lenges on how to secure the entire infrastructure. As new 5G capabilities are introduced, new types of threats 

emerge, demanding new approaches to security [7]. For instance, for network services (NSs), one of the key 

characteristics discussed in 5G is the additional complexity and security concerns on how to properly ensure their 

isolation, due to the number of involved components, legacy interworking, and configuration risks.  

Three major attack scenarios for 5G network slicing were uncovered by AdaptiveMobile [8], including the follow-

ing: i) user data extraction; ii) DoS against another network function; and iii) access to an NF and related infor-

mation of another vertical. These attack scenarios, specifically focused on network slicing, describe how to gain 

access to resources of another slice, and how to perform a DoS attack on another slice. They also explain how to 

extract user-specific information (such as a location) from another slice. Current approaches and technologies 

are not mitigating such attacks. The lack of in-built observability in SOL011 and SOL005 5G architecture interfaces 

is highlighted in [9], which makes the corresponding Network Function Virtualisation Orchestrator (NFVO) ex-

posed interfaces sensitive points in terms of security. Moreover, the attack surface is not only limited to the NFs 

and to a single deployment host, but also extends to many nodes. Multiple and heterogeneous domains bring 

additional complexity and a wider attack surface [10]. 

On the other hand, the increasing adoption of cloud-native architectures and the microservice paradigm in the 

telecommunication sector has allowed decoupling classical monolithic NFV, previously deployed in purpose-built 

hardware, into multiple smaller services running on top of VMs and containers. Such a cloud-native oriented 

approach allows the better fulfilment of the requirements of different 5G service types, such as enhanced Mobile 

Broadband (eMBB), massive Machine Type Communications (mMTC), or Ultra-Reliable Low-Latency Communi-

cation (URLLC). Nevertheless, despite the numerous benefits (e.g., increased modularity and flexibility), a Cloud-

native and a microservice approach results in larger and more complex infrastructures, which inevitably in-

creases the attack surface at multiple levels.  

The increased number of connections between microservices raises new risks of man-in-the-middle attacks 

spread over the infrastructure, so traffic authentication and authorization between services are vital concepts. 

The increased number of components might also lead to misconfigured, and thus, vulnerable assets. For in-

stance, a recently disclosed backdoor [11] leverages misconfigured Docker API ports to infiltrate Docker servers 

and later execute malware on the target’s infrastructure. Nowadays, those services might extend far from the 

traditional on-premises deployments. As we continue to scale up the number of microservices, it is paramount 

to build strategies to cope with increasingly Cloud-native environments and have the means to monitor the com-

plex mesh resulting from all the microservice communications.  
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Breaking up those traditional monolithic network functions into microservices, often deployed in different nodes 

and composed of multiple operating systems, programming languages and third-party libraries, is by itself, an 

open challenge, not only from an architectural standpoint, but also from a security point of view. For instance, 

how to know what is running, how to roll out new service versions and how to monitor and secure all those 

microservices [12] become quite challenging tasks. In addition, the application of security patches to containers 

presents additional challenges because they are usually considered as immutable, which means that any recon-

figuration or update involves rebuilding and redeploying the container.  

5G-based scenarios composed of several heterogeneous Cloud-native domains, such as the ones considered in 

the 5G-EPICENTRE project, also create new security challenges, due to the underlying increase in size and com-

plexity. 

The heterogeneity of sets of containers increases the attack surface and raises important security concerns. Thus, 

it will be important to carefully configure them in terms of authentication and authorization processes [1]. 

Customer’s misconfigurations of cloud resources are being presented as the leading cause of data loss in the 

cloud environment [13] and due to the human factor. Many examples related to cloud storage buckets and blob 

breaches exist. For instance, a misconfigured cloud storage bucket exposed Pfizer drug safety reports, 0x00sec 

reported that an S3 bucket was publicly accessible for 63 days, and more than 54,000 scanned New South Wales 

driver’s licenses were found in open cloud storage [14]. 

Security can be applied along with all the different steps including defining stack, securing the cloud, securing 

Infrastructure-as-Code (IaC), monitoring workloads, alert at runtime (it is important to have the context and 

identify the source for the security threats). 

Special attention should be attained due to the short lifespan of containers: 49% are alive less than 5 minutes 

[15]. This is caused by the uniqueness of their purposes since most of them only need to go live long enough to 

execute a specific function. These extremely short lifespans have security implications, requiring a DevOps ap-

proach. Such approaches may follow MITRE ATT&CK type of frameworks, allowing to codify into tools such as 

sysdig [16]. 

Moreover, an increased number of this kind of containers is expected, because they add isolation and execution 

capabilities for individualised functions or processes to run autonomously and independently.  

2.5 5G-EPICENTRE Use Cases’ security considerations 

In the previous sections we have described the important aspects of 5G security and means to address them 

through the HSPF. In this Section, security considerations for each UC in the project are addressed. Table 3 pre-

sents security measures that are implemented by the project’s UCs at an application level. 

Table 3: Security measures applied by the UCs (at the application level) 

Related protocol, 

service or other 
HSPF Proposed Security Measures 

MQTT 
Use of WSS (encrypted WebSocket channels). 

Use of Access Control Lists (ACLs) for different connections. 

Application  

Front-End 

Use of secure and encrypted channels (e.g., HTTPS). 

Two-factor authentication for user authentication on the application web/mobile appli-

cation. 
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Role-Based Access Control (RBAC) for access to the web/mobile application.  

Internal  

Communications 

Encrypted connections for internal communications (Through the use of HTTPS). 

Token based authentication for access to critical services (e.g., database). 

External  

Communications 
Encrypted connections for all external communications. 

Application API(s) 
Token based authentication for API requests. 

RBAC for API requests. 

Considering the yet ongoing integration between UCs and Testbeds, as well as Cloud-native security standards 

and best practices, it is assumed that several UCs may still have to conduct some changes to their existent solu-

tions aiming to assure the correct implementation of the needed security mechanisms, including those needed 

to interact with the 5G Core. An example is that all the UCs that provide MCx services are already complying or 

in the process to do so, with the security requirements defined in TS 33.501 [1]. 

As such, a detailed list of the implemented security mechanisms by each UC will be provided in the final version 

of this deliverable (D2.8), already reflecting the eventual changes needed to ensure the correct implementation 

of the mentioned mechanisms. This decision is supported on the Roadmap defined in this document (see Section 

3.6), which foresees the increase of interaction among the partners responsible for the HSPF and the UC owners, 

testbed owners (and even third-party experimenters), in order to deploy and validate the HSPF next to their 

respective Network Applications. 

In addition, with the deployment of the UCs using Kubernetes and considering the HSPF, it is foreseen that the 

less frequent types of attacks to the application layer (e.g., DDoS attacks, HTTP floods, SQL Injections, Cross-site 

scripting, Port Scan, among others) will be properly detected and blocked by the Network Application derived 

from this framework  (see Section 3.4). 
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3 Holistic Security and Privacy Framework 

This Section aims to present a set of relevant aspects related with the HSPF, starting with the framework archi-

tecture evolution present in Section 3.1; followed by the description of the latest HSPF implementation architec-

ture in Section 3.2; the deployment process in Section 3.3; and the path of HSPF until it could be classified as 

Network Application in Section 3.4. The validation activities conducted with the latest implementation architec-

ture are detailed in Section 3.5, and a Roadmap containing the foreseen future activities is provided in Section 

3.6. 

3.1 Framework Evolution 

The first HSPF reference architecture was the result of an extensive analysis to the existent SoA in the area and 

the collection of requirements stemming from the 5G-EPICENTRE security challenges. This reference architecture 

is briefly presented in Section 3.1.1, while Section 3.1.2 briefly presents the first stable HSPF implementation 

architecture. In addition, Annex IV: HSPF Evolution provides additional information to both these Sections, deliv-

ering a detailed description of each respective version available in D2.1: Cloud-native security specifications. Fi-

nally, Section 3.1.3 reports on the lessons learnt so far, which impacted the latest implementation architecture. 

3.1.1 Reference Architecture 

Figure 1 depicts the initial reference architecture of the proposed Security and Privacy Framework, gathering 

three key elements: a security engine, a policy engine, and an Artificial Intelligence (AI) engine. This architecture 

was the result of an initial research on the state of the art at that time, and it follows the logical components of 

a conceptual framework model, such as the one specified in ZTA [17]. 

 

Figure 1: Holistic Security and Privacy Framework – reference architecture 

3.1.2 HSPF Implementation Architecture  

The first stable version of the HSPF implementation (depicted in Figure 2) has two major components: the set of 

collection agents and the Analytics, Intelligence, Control and Orchestration (AICO) component. Each collection 

agent is responsible to capture traffic data and send it to the AICO component. The AICO is composed of four 

components: Data Collection, Analytics, Intelligence and the Control & Orchestration.   
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. 

Figure 2: Initial stable architecture of the HSPF implementation  

3.1.3 Lessons Learnt and Current Implementation 

As a result of the previous validation activities and performance analysis conducted to the former HSPF imple-

mentation architecture, several drawbacks and weak points arose: 

 A centralized algorithm for the traffic of all the micro-services revealed not to be the best option (con-

sidering that different micro-services do present different types of traffic). 

 Supervised approaches require not only normal traffic but also malicious traffic for every training execu-

tion. This resulted in several issues, as explained in Section 3.2.3. 

 There was no user-friendly monitoring tool that could be used to provide observability over the system. 

 Upon the detection of an attack, the HSPF should provide more flexibility to the UC owner, or the third-

party experimenter using it (e.g., directly blocking the IP might not be desired behaviour). 

Considering the previous issues, several changes were applied to the latest HSPF implementation architecture. 

The biggest change is the evolution towards a Federated Learning (FL) approach. This evolution is supported on 

the need of not only providing security to a single deployment of a Network Application executing into a specific 

location (e.g., testbed), but, instead, to be able to simultaneously monitor and manage different deployments of 

the same Network Application in different locations. This approach also enables the continuous training of the 

AI models in different locations, leveraging the usage of data collected from other locations, albeit without risk-

ing to compromise the security and privacy of the original data.  

Another important change, regarding the low-level architecture, is the presence of the collector and the classifier 

next to each micro-service, within each Network Application, instead of having a centralized component in 

charge of performing the classification of all the inbound and outbound traffic. This change is believed to be 

crucial to achieve a fine-tuned traffic classification for each unique micro-service communications profile.  Also, 

a key addition is the presence of a Dashboard, where statistical and telemetric information is presented. Finally, 

upon the detection of an anomaly, the HSPF now has a reporting interface, thought to provide real-time warnings 
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and statistical information to third-party applications via different methods, thus aligning with the requirements 

of a Network Application itself. A detailed description of the latest reference architecture may be found below 

in Section 3.2. 

3.2 Latest Implementation  

This Section aims to detail the relevant aspects related with the latest HSPF implementation. Section 3.2.1 starts 

by providing its latest architecture from a macro-level point of view. Section 3.2.2 details how the traffic is col-

lected and processed, so it may be then classified by the ML model, which is described in Section 3.2.3. Section 

3.2.4 details the different stages present in the classification process, while Section 3.2.5 presents and details 

the flow taken by the collected traffic, including their classification and later use for ML training purposes. 

3.2.1 Architecture 

Figure 3 depicts a macro-level overview of the latest HSPF architecture. 

 

Figure 3: Latest architecture of the HSPF implementation 

The latest architecture considers the major characteristics of a FL-based approach, including the ability to train 

AI models on decentralized data, thus avoiding potential data breaches that could compromise the data security 

and privacy. 

Taking a closer look to an HSPF deployment (see Figure 4), it is possible to find three major components: (i) 

Collector and Agent (which are co-located); (ii) Dashboard; and (iii) Report Interface. In addition, the Agent also 

communicates with the Aggregator, as explained below. 

The Collector and Agent component has several responsibilities. The Collector part is responsible for collecting 

the network inbound and outbound traffic passing through the main interface of the application it is next to. This 

information is then coupled into flows and stored until analysed by the ML model. The Agent, on the other hand, 

is responsible for inferencing stored data, resulting in the identification of the potential malicious flows that are 

then reported to the Dashboard and to the Report Interface. Periodically, there is also a routine in this compo-

nent, that is in charge of training a new instance of the ML model, a process that is managed by the Aggregator 

(further details on the training and evaluation of the algorithm may be found in section 3.2.5). 

Acknowledging the importance of strategies for assuring data security and privacy, a strategy has been devel-

oped to avoid the replication of flows among different components of the HSPF. Bearing this in mind, but 

also recognizing the need of maintaining the characteristics of the ML models in use for history and replication 
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Figure 4:  Latest architecture of the HSPF implementation (detailed) 

purposes, an Aggregator has been introduced in the architecture. Due to the characteristics of the ML models in 

use, it is possible to keep only a diminished set of information about these models (e.g., weights between layers), 

thus, reducing the space needed to store a traditional AI model and achieving the goal of not sharing information 

among components.  

The Dashboard consists of a GUI that provides observability over the inbound and outbound traffic of the pro-

tected network application, namely the partial identified as malicious. The graphical representation of the data 

is achieved using custom graphical elements, partially enabled by Grafana [18] and data collected/stored by 

Prometheus. Figure 5 depicts the preliminary version of this dashboard. 

 

Figure 5: HSPF Preliminary Dashboard 

The Report Interface arises from the need of expanding the set of options of a UC owner or third-party experi-

menter when reacting to the detection of malicious flow. Besides keeping the possibility of applying the default 
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behaviour (e.g., block the origin IP upon the detection of a malicious flow), this interface now allows the com-

munication with an MQTT broker. Such possibility was developed, bearing in mind that the application owner 

may not want the system to act on its own upon the detection of malicious flows, but rather might want to 

implement a custom method/action to handle attacks. It must still be noted that with the possibility of sending 

messages to a, MQTT message broker, the HSPF is now able to directly report to the 5G-EPICENTRE Publisher 

component every time an attack occurs, targeting a Network Application deployed in one of the project testbeds. 

Additional information on the Report Interface is present in Annex V: Latest HSPF implementation architecture. 

Beyond the Report Interface, the HSPF continues to offer a way for taking actions immediately after the detection 

of malicious traffic via the application of traffic policies on the Ingress level, which is achieved using the Open 

Policy Agent (OPA) [19]. Naturally, the UC owner or third-party experimenter will have the ability to decide which 

are the desired actions to be taken upon the identification of malicious traffic when deploying this tool. 

3.2.2 Data and network traffic collection 

The first step towards the detection of traffic anomalies is to perform the traffic capture itself. As such, collectors 

are injected into all the micro-services of the application, with the sole purpose of registering the incoming and 

outgoing traffic for the respective service. Also called as “side-cars”, their final output is a pcap file, containing 

all the network traffic previously obtained using the tcpdump [20] tool.  

Considering all the pcap files produced by the side-cars, for each one, a csv formatted file is generated, which is 

used later on to train the AI approaches. Such conversion is made using the NFStream [21] tool, aiming to pro-

duce datasets with a set of features similar to the ones present in CIC-IDS2017 [22] , which was initially used 

during the preliminary set of experiments as a baseline dataset. 

Bearing in mind that there is a set of features that are not relevant for the identification of traffic anomalies 

(since their value is not related with the traffic characteristics itself and rather represent the origin, endpoint and 

other metadata of the flow), those have been removed. The entire list of removed features is the following: 

Source IP, Source MAC, Source OUI, Source Port, Destination IP, Destination MAC, Destination OUI, Bidirectional 

First Seen ms, Bidirectional Last Seen ms, Forward First Seen ms, Forward Last Seen ms, Backward First Seen ms, 

Backward Last Seen ms. 

Assuming the high range of values for some of the features, and assuming it is not possible to always define the 

range of values accurately for each feature, it was decided to apply a standardization process instead of a min-

max normalization, as before. The applied method was the Standard Scaler, which subtracts from the value of 

each instance the mean of the set of values (for each feature), and divides it with the respective standard devi-

ation.  

3.2.3 Classification Model 

With a focus on unsupervised approaches, the implemented one is based on an Autoencoder. An Autoencoder 

is a ML algorithm based on Unsupervised Deep Learning, which is known to present a great balance between 

classification performances and fast classification times [23]. 

The reasoning behind the pursuit of unsupervised approaches is mainly supported on the previous experiments 

conducted with supervised ones. For supervised approaches, it was concluded that it is necessary to previously 

train the algorithms with a set of attacks (e.g., anomalous flows), which translates into an inability of the algo-

rithm to identify unseen attacks. Also, considering that every time the algorithm needed to be trained in runtime, 

it was necessary to have the dataset of known attacks locally, or send the collected data (from the micro-service 

communications) to an external place to allow this training. Both options had some limitations. The first pre-

sented an issue with storage space availability, and the second a major privacy (and potential security) issue. As 

an alternative, unsupervised approaches should only require normal data to be trained with, thus removing the 

need of having a dataset with known attacks every time the algorithm needed to be trained. 
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The implemented ML architecture is depicted in Figure 6. 

 

Figure 6: Model architecture 

3.2.4 Classification Stages 

Due to the uncertainty associated with the ML model classifications, it is necessary to minimize the potential 

effects that a misclassification might have. As such, a process has been developed, to allow a way to handle how 

the detected traffic anomalies evolve, and are then classified as attacks, which is carried out by the Agent and is 

depicted in Figure 7.  

The Agent internally contains two lists: a greyed list, which is used as a “grey zone” for IPs that have already been 
in the origin of malicious traffic, but have not yet been blocked, and a blocked list, where the blocked IPs are 

registered. 

Upon the identification of an anomaly, which happens when a flow (or set of flows) is classified as malicious 

traffic, the Agent will verify if the Source IP of the identified flow is already marked as greyed in the internal list. 

In cases where the IP is not in the greyed list, it is added, and the respective counter of occurrences is set to 1. 

On other hand, if the IP is already in the list, the respective entry is incremented by 1 and the counter value is  
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Figure 7: From anomalies to attacks - custom process 

compared with a threshold. If the respective counter is larger than the threshold, the IP in question will be 

blocked by means of the application of a security policy defined by OPA, and a message will be sent to the Pub-

lisher component reporting this incident. 

There is also a periodic task in charge of cleaning both internal lists. IPs are removed from the blocked list if the 

last detected attack happened already N hours ago (configurable value). However, for the greyed list, counters 

associated with each IP are decreased on each execution of this task. 

It must be noted that all thresholds, periodicity intervals and increase/decrease values, may be defined while 

deploying the HSPF, thus allowing this process to be tailored to the needs of 5G-EPICNETRE UCs and of third-

party experimenters. 

3.2.5 Classification Flow 

Figure 8 depicts the classification process from the traffic collection stage up to the periodic ML model training. 

The first step towards traffic anomaly detection is precisely to capture the network traffic. This is achieved using 

the NFStream plugin [21], which collects the network packets and aggregates them in flows with a set of specific 

features. 

Upon the writing of the flow to a temporary file, a co-located component, the ‘Agent’, extracts the flow(s) from 
the file and performs inference over them. This file is intended to act as a buffer, but with the advantage of being 

persistent. As such, in case of a temporary down time of the system (which may be caused by the most different 

of reasons), a new instance of the Agent will be automatically instantiated by Kubernetes, and this new instance 

will have access to all the previous and unprocessed flows. In addition, since the Agent will not only be able to 

process flows individually but also in windows, the existence of a file solves the need of having the flows history 

available to the system. 

The Agent has two main processes: perform inference from the collected data (as mentioned before) and train 

a new instance of the ML algorithm. These processes are executed periodically, except for the inference that also 

considers the number of flows collected until a certain period. Moreover, both processes are only executed if 
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during the previous elapsed time new information has been collected. Otherwise, the system remains idle until 

the next iteration. 

 

Figure 8: HSPF classification process 

When the inference process is executed, its result is saved in the corresponding files, considering if the flow (or 

set of flows) were marked as normal or malicious traffic. The option of having two persistent files with the infer-

ence results, besides their persistence (similar to file mentioned before), is also related with the possibility of 

further analysis to the classification results, namely for continuous improvement, but also, for eventual audits 

that may be conducted to the HSPF. 

The data hereby classified as normal is later used during the periodic training iterations of the algorithm. Before 

starting such process, the Agent reports to the Aggregator its readiness to start the process and waits for the 

confirmation to start. Even though this step is not needed in isolated scenarios (that is, where the HSPF is only 

providing security to a Network Application in one location, e.g., Kubernetes cluster), it is needed for cases where 

the Network Application is deployed in multiple locations, namely in multiple project testbeds, or even in de-

ployments following the EDGE-CORE approach. After the confirmation is received, the Agent triggers the training 

routine, which results in a newly trained algorithm instance. Afterwards, this new instance is evaluated with 

some validation data, and if its performance is better than the one currently in use, the new one replaces the 

previous one, and the inference will start to be conducted by this new instance. Both the results of the validation 

phase, along with some characteristics of the new instance, are shared with the Aggregator and stored. 
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3.3 Deployment process 

Two methods have been envisioned to enable the quick deployment of the HSPF: (i) using a custom script, that 

promotes the injection of the HSPF components next to already executing vertical applications; (ii) allowing UC 

owners and third-party experiments to specify into their YAML component files that they want to install the HSPF 

components next to their micro-services. 

At this point, the first method has been successfully implemented and validated in Kubernetes clusters, applying 

RBAC guidelines. Recently, efforts were conducted to achieve a preliminary deployment of the HSPF at UMA 

premises, thus achieving the first functional deployment of the HSPF, deployed in one of the project testbed 

infrastructures. This has been recently achieved using the first method described above, where only the 

namespace and the list of components to be monitored are used as input parameters for the installation script. 

Also, the UC owner or third-party experimenter has the possibility to only instantiate the HSPF security compo-

nents next to a set of components at their choice, which provides more flexibility and control. Annex V: Latest 

HSPF implementation architecture contains debug information that demonstrates the correct behaviour of the 

HSPF internal components. 

The second method is currently under development. Even though this is not mandatory for the use of the HSPF, 

it has been defined as a goal to be achieved, which is expected by M31. The rationale behind the development 

of the second method is the possibility for the Network Application developers to specify their intention of using 

the HSPF components directly on each yaml file of their Network Applications, which is expected to be a simpler 

and direct process, thus reducing potential barriers for the usage of HSPF by the majority of UC owners and third-

party experimenters. 

The requirements to deploy the HSPF in a Kubernetes-based cluster that an administrator must assure are the 

following: 

 Provide a way to reach the namespace, where the framework will be deployed (e.g., a config file, to be 

used with the kubectl client command). 

 Authorize OPA to enforce traffic policies at the Ingress level. 

 Enable Istio in the cluster. 

When it comes to the UC owner, or third-party experimenter, the key step is the selection of the set of micro-

services that the HSPF should monitor and provide security to. It is also possible to only specify the namespace, 

where it is intended to deploy the HSPF. However, if no list of micro-services is specified, the framework will 

assume that it must monitor all of them and deploy the necessary components accordingly. 

3.4 Evolution towards a Network Application 

The first version of the HSPF was the result of a vast analysis of the state of the art at the time (M12, D2.1), and 

resulted in a conceptual reference architecture with three key components: a security engine, a policy engine, 

and an AI engine. This was considered the first step towards the detection of malicious traffic, aiming to provide 

security for the Network Applications being experimented under the scope of 5G-EPICENTRE.  

The former architecture led to the first HSPF implementation, whose architecture presented significant changes 

when compared to the conceptual one, mainly because of the experimentation process that took place to 

achieve such version. With two major components (the set of collection agents and the AICO component), the 

HSPF was starting to get close to a Network Intrusion and Detection System (NIDS) solution, allowing the identi-

fication and mitigation of threats (M24, D2.1 revision). 

The latest version is the result of all the previous knowledge, combined into a new implementation architecture, 

which besides providing an improved version of the previous functionalities (e.g., data security, traffic anomaly 
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detection), now also delivers a Dashboard (to provide crucial information in a user-friendly manner) and a Report 

Interface (through which real-time analysis related data may be easily provided).  

The development of Network Applications, as defined in one of the latest 5G-PPP Software Network Working 

Group White Paper [4], aims at simplifying both the implementation and the deployment of Vertical Applications 

over the 5GC network. Bearing this in mind, the HSPF, despite of not being originally foreseen to be one, may 

now also be considered as a Network Application in a sense that: 

 It does not represent a separated component in the 5G-EPICENTRE architecture. 

 It is not mandatory, rather it is optional to whichever UC owner or third-party experimenter that may want 

to use it. 

 It includes a way to provide data to the underlying Vertical Application, so it may take proper actions upon 

a specific event (e.g., upon the detection of malicious traffic, choose to terminate a specific connection). 

3.5 Validation Activities 

For the purpose of achieving the first stable version of the detection module enabled by an unsupervised ap-

proach, it was necessary to perform a series of testing and assessment activities. To that end, the CIC-IDS2017 

dataset has been used. 

As mentioned before, the implemented approach was based on an Autoencoder. This type of approach presents 

two major phases to produce a satisfactory result: Reconstruction and Classification. 

3.5.1 Reconstruction 

As mentioned in Section 3.2.2, one of the first steps was to obtain a standardized version of the data. For con-

textualization, their representation is depicted in Figure 9, where the values of each feature for a normal instance 

are shown on the left and the values of each feature for an anomalous instance are shown on the right. 

     

Figure 9: Standardized data 

Considering that the selected approach was based on an Autoencoder, it was decided that performing any kind 

of feature reduction would not be appropriate, since Autoencoders already perform a dimensionality reduction. 

As such, the values of the original features were used without additional pre-processing, besides the standardi-

sation process. 

While seeking for the best parameters (of different layers) combination, a search grid has been applied. The 

considered layers and respective potential parameter values were the following: 

 Number of layers: [7 (dimensions of each layer 70, 35, 18, bottleneck); 9 (dimensions of each layer 70, 

50, 30, 10, bottleneck); 11 (dimensions of each layer 70, 55, 40, 25, 10, bottleneck)]. 
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 Hidden layers’ activation function: [ReLU, eLU, LeakyReLU]. 

 Optimizers: [Adam, Nadam]. 

 Bottleneck layer dimensions: [3, 5, 7]. 

 Learning Rate: [0.001, 0.0001, 0.00001]. 

The purpose behind testing different combinations of layers and respective parameters, was to explore how 

different combinations of layers, as well as how different decays in layer dimensions would impact the recon-

struction learning step. The activation functions and the optimizers were selected considering a previous inves-

tigation on the matter by Carrera et al. [23], and some preliminary implementation tests. 

The parameters for the bottleneck layer dimensions were selected aiming to be more difficult for the anomalous 

instances to be reconstructed, meaning if the bottleneck layer was higher, the anomalous instances would prob-

ably be easier to reconstruct. This contradicts the underlying goal of the algorithm, not being able to correctly 

reconstruct the anomalous instances, and thus presents a bigger reconstruction error in the end, which in com-

parison with a threshold can be used to classify the samples as either malicious or not malicious traffic. 

The training was performed with 300 epochs, batch size of 64, early stop with patience of 20 and the loss was 

calculated using Mean Squared Error. 

The best combination of hyperparameters was selected based on the validation loss. Figure 10 presents an ex-

ample of training and validation losses, achieved during a training and validation routine. 

 

Figure 10: Training and Validation Loss 

A representative sample of the best and worst results achieved during the entire experimentation phase are 

shown in Table 4. The entire list of results may be found in Annex V: Latest HSPF implementation architecture. 

Table 4: Hyper-tunning parameters for Autoencoders reconstruction phase 

Number of 

layers 

Hidden layers activation 

functions 

Optimizer Bottleneck layer 

dimension 

Learning rate Validation 

Loss 

11 
elu Nadam 7 0.0001 0.0182 

11 
leakyrelu Adam 7 0.0001 0.0184 

11 
elu Adam 7 0.0001 0.0187 
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9 
leakyrelu Nadam 7 0.0001 0.0196 

9 
elu Nadam 7 0.0001 0.0201 

9 
elu Adam 7 0.0001 0.0207 

11 
elu Adam 5 0.0001 0.0210 

11 
leakyrelu Nadam 7 0.0001 0.0217 

7 
elu Adam 3 1e-05 0.1208 

7 
reLU Adam 3 1e-05 0.124 

9 
reLU Adam 3 1e-05 0.1293 

7 
eLU Adam 3 0.001 0.1322 

7 
reLU Adam 3 0.0001 0.1568 

11 
reLU Adam 3 1e-05 0.1677 

7 
reLU Nadam 3 0.0001 0.8150 

11 
reLU Nadam 3 0.001 0.992 

3.5.2 Classification 

At this point, the reconstruction errors provided by the Autoencoder were used to classify the different samples. 

With that purpose in mind, a threshold needed to be defined, to allow a separation between normal and anom-

alous instances.  

Two major steps were taken to find that threshold: (i) for each instance, the reconstruction error between the 

original instance and the reconstructed one was calculated using the Mean Squared Error, a process applied both 

to the training and validation sets; and (ii) the mean and standard deviation of the reconstruction errors were 

also calculated. 

The threshold value was calculated using the expression below: 

 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜇 + (𝑥 ∗ 𝜎) (1) 

 

Considering the high variance of the reconstruction errors, the threshold that was being obtained with all the 

values did not allow us to perform a distinction division between malicious and not malicious traffic. As such, a 

method was applied to detect the presence of eventual outliers in the data, that could be potentially introducing 

some error in the calculus of this threshold. This detection was performed using an Interquartile Range based 

outlier detection approach [24]. First, the upper bound was calculated, which was the 75% percentile summed 

to 1.5 times the interquartile range (corresponding to the difference between the 75% percentile and the 25% 

percentile of the data). After that, all the errors that were above that upper bound were eliminated. Upon this 

pre-processing, the new threshold value was revealed to be much more appropriate. 
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With the objective of achieving the threshold that gave us the best performance for the classification, the F1-

score metric [25] was used. This metric was selected to evaluate the different results, considering that the most 

important features for our problem are Recall and Precision [26], and that F1-score metric is a harmonic mean 

between the former two. As previously stated, the threshold was calculated by summing the mean and the 

standard deviation multiplied by a constant (σ). The values that σ took were the following: [1, 10, 20, 30, 40, 50], 

and the F1-score values achieved are shown in Table 5. 

Table 5: Hyper tunning parameter for the threshold formula 

Value Multiplied F1-score 

1 
0.649 

10 
0.714 

20 
0.741 

30 
0.755 

40 
0.759 

50 
0.753 

The value that maximized the F1-score was 40, so this value was selected. By combining the best model in terms 

of reconstruction, and the best threshold formula, the testing set was used to analyse the performance of the 

model. The achieved results for not malicious flows are depicted in Figure 11 on the left, with the results for the 

malicious flows depicted in the same Figure on the right. 

        

Figure 11: Reconstruction error for normal and malicious flows 

In addition, the achieved classification metric values and corresponding confusion matrix [27] are presented in 

Table 6 and Table 7, respectively. 
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Table 6: Classification results 

Metric Score 

Precision 
0.9232 

Recall 
0.6448 

F1-score 
0.7593 

False Negative Rate 
0.3552 

Accuracy 
0.8673 

Table 7: Confusion matrix 

 Actually Positive Actually Negative 

Predicted Positive 
172668 

14357 

Predicted Negative 
95103 

542859 

The achieved precision is quite high, meaning the model is identifying most of the normal instances accurately, 

which is one of the key aspects, as the model must not produce a high number of False Positives (because it 

would potentially cause issues with normal traffic). This behaviour could result later in the disruption of normal 

operation of the underlying Vertical Application. In comparison to the literature [23], this approach presents 

similar results for most of the metrics for the different algorithms present in this article, and even outperforms 

some of them, as may be seen in Table 8 (translated from the referred publication for easier comparison). 

Table 8: Results from testing unsupervised algorithms on the CIC-IDS2017 [23] 

Algorithm Precision Recall F1-score Accuracy 

EC 
0.6264 0.5961 0.6053 0.7804 

EIF 
0.7063 0.7063 0.7063 0.8142 

DAGMM 
0.6934 0.6934 0.6934 0.8060 

DAGMM-EIF 
0.7083 0.7040 0.7056 0.8182 

DA 
0.6774 0.6774 0.6774 0.7990 

DA-EIF 
0.7051 0.6912 0.6975 0.8148 

DSEBM 
0.6800 0.6800 0.6800 0.7975 

MemAE 
0.7146 0.7146 0.7146 0.8194 

MemAE-EIF 
0.7431 0.6972 0.7146 0.8350 
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As may be seen from the comparison between the two Tables, the implemented approach presents higher metric 

values for the precision and for the F1-score. On the other hand, it presents a lower value for the recall. Further 

fine-tuning activities will be conducted, aiming to improve the overall performance of the implemented ap-

proach. 

3.5.3 Results Analysis 

The ideal validation loss during the Reconstruction phase would be zero. Bearing in mind that, in practice, this 

value will always be quite challenging (if not impossible) to achieve, it is possible to notice that for the best 

achieved results, the validation loss was quite close to zero (meaning that the implemented approach is able to 

reconstruct the different samples with a diminished percentage of error). 

As for the Classification phase, it was possible to verify the good performance of the implemented approach 

when comparing its performance for the CIC-IDS2017 dataset with other approaches reported in the literature. 

In fact, this approach outperforms the best reported approaches for some of the evaluation metrics and presents 

similar values for the remaining ones. 

3.6 Roadmap 

This section aims to present the major activities foreseen for the remaining period of Task 2.6 (8 months, M28-

M36), which are shown in Table 9. 

Table 9: Roadmap 

Description M28 M29 M30 M31 M32 M33 M34 M35 M36 

Major Milestones D2.7        D2.8 

Fine tuning of the latest HSPF 

architecture components 
         

5G-EPICENTRE UCs Integration          

Third-party experimentation 

supporting activities 
         

The first milestone presented above foresees some fine-tuning related activities to the latest HSPF implementa-

tion architecture, as a result of further validation activities, which are expected to happen until the end of M29. 

The second milestone corresponds to the integration between the HSPF and different project UCs, which is ex-

pected to happen between M30 and M33 at the latest. The first integrations will be conducted with the UCs 

deployed at UMA testbed, leveraging the fact that an initial deployment has already been completed there. 

The third milestone is related with the support to third-party experimentation, which is foreseen to happen 

between M30 and M34 where support will be given to third-party experimenters that may want to use HSPF to 

secure their own Network Applications. 

Naturally, the writing of D2.8 will be carried out in simultaneously with all other activities, with a special emphasis 

between M33 and M35, leaving M36 for the internal review and quality check procedures over the document. 
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4 Conclusions  

The increasing complexity from deploying 5G scenarios, such as the ones brought by the 5G-EPICENTRE project, 

designed on top of heterogeneous Cloud-native cross-testbeds, poses several challenges from a security stand-

point. They demand specific security-tailored approaches in terms of orchestration, analytics, and automation. 

This document started by briefly presenting how the 5G architecture addresses the security challenges and 

standards, namely, through the identification of the 5G security features; the 5G core components in charge of 

their enforcement; and the newest attack surface, resulting from the adoption of cloud-native technologies. 

Afterwards, an overview of the evolution of the HSPF since the beginning of the project is provided, starting with 

the reference architecture, going through the first stable HSPF implementation architecture and finalizing with 

a set of lessons learnt in the process, and with the latest architecture that is described in detail. 

A major goal was the ability of deploying the HSPF next to any existent running ‘Network Application’ being 

executed in a Kubernetes environment, an objective that has currently been achieved. Some details on how this 

deployment may happen are provided, as well the next steps to improve the current process. As a result of the 

project initiatives towards the definition of what a ‘Network Application’ is, the HSPF has evolved and may now 

also be classified as one (see also D1.4 and D4.2). 

Moreover, a change of course on the detection model approach has been made based on the results and insights 

of the past validation activities, with the current approach being based on an unsupervised approach. Despite 

the fact that only preliminary validation tests have been conducted, we strongly believe that unsupervised ap-

proaches are the best ones for dealing with the security challenges that 5G-EPICENTRE has to deal with. The 

validation activities conducted so far with the latest architecture are described, and a roadmap is provided con-

taining the major future activities to be conducted, namely the integration with different 5G-EPICENTRE parties. 

The document also includes five Annexes, with the first presenting cloud-native background related concepts; 

the second focused on cloud-native security, namely on the existent best practices and standards; the third de-

scribes the technologies chosen for the development of the framework; and the fourth providing complementary 

information to the evolution of the HSPF. Finally, the fifth depicts a set of initial experiments conducted during 

the development and validation of past versions of the security framework and presents some debug information 

collected from the initial deployment conducted at UMA. 

In summary, the document presents the work conducted so far under the scope of Task 2.6, with the highlight 

of the description of the existent HSPF, specifically designed and developed to bring security for any solution 

following the concept of a ‘Network Application’, like the one serving as the basis of 5G-EPICENTRE. The results 

and lessons learnt from the integration with 5G-EPICENTRE UCs and testbeds, as well as any other relevant de-

velopments related with the HSPF, will be reported in D2.8, due by M36. 
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Annex I: Cloud-native security 

Standards and best practices 

Embracing containers, as one of the central transformations in the Cloud-native environment, requires new se-

curity standards and best practices to be attained in the design of solutions following the standardization work 

from the use of a high number of technologies of the 5G puzzle.   

To that aim, this Annex presents the concepts, standards and best practices aiming to contribute to Cloud-native 

security from specialized groups. Its adoption in the HSPF of 5G-EPICENTRE will contribute to stopping attackers 

and defending against their threats. Thus, this section addresses the Zero Trust Architecture, Security By Design, 

UML, SecDevOps, Digital Signatures, Policies, Authentication and Authorization, Compliance Auditing and Supply 

Chain Security. 

Zero Trust Architecture 

Zero trust term was coined by John Kindervag [A1],represents the evolution of the concept of de-perimeteriza-

tion and represents a paradigm in cybersecurity. Such a paradigm departs from the principle that trust is not 

implicitly granted, but instead, it should be specially focused on continuous assessment of resource protection 

per transaction basis. In such a paradigm, protection should consist in minimizing access to resources, including 

data, processing units and applications/services to only those subjects and assets identified as needing access, 

as well, as continually authenticating, and authorizing the identity and security posture of each access request. 

A zero-trust architecture provides a set of cybersecurity principles for enterprises that departs from the zero 

trust principles primarily focused on data protection to prevent breaches and limit internal/lateral movement.  

It can also be expanded to consider protection for assets (devices, infrastructure components, applications, vir-

tual and cloud components) and subjects (end users, applications and other non-human entities that request 

information from resources). Zero Trust Architecture (ZTA) is an end-to-end approach to enterprise resource and 

data security that encompasses identity (person and non-person entities), credentials, access management, op-

erations, endpoints, hosting environments, and the interconnecting infrastructure.  

The initial focus should be on restricting resources to those with a need to access and grant only the minimum 

privileges in terms of their needed operations. Traditionally, the focus was put on perimeter defence and au-

thenticated subjects were given authorized access to a broad collection of resources once on the internal net-

work. As a result, unauthorized lateral movements within the environment have been one of the biggest chal-

lenges. 

Moreover, in [A1] NIST also proposes a zero-trust architecture as the response to the increasing complexities 

from the typical enterprise’s infrastructures. A single enterprise may operate several internal networks, remote 

offices with their own local infrastructure, remote and/or mobile individuals, and cloud services. This complexity 

has outstripped legacy methods of perimeter-based network security as there is no single, easily identified pe-

rimeter for the enterprise. Perimeter-based network security has also been shown to be insufficient, since, once 

attackers breach the perimeter, further lateral movement is unhindered. 

Security-by-design 

In an effort to mitigate any security-related threats, more and more organisations are adopting security-by-de-

sign (SBD) for automating their data security controls. In that way, cybersecurity is considered from the early 

development stages rather than being an afterthought once software has been designed and developed. Thus, 

through its implementation from the very beginning of a project, SBD purpose is to prevent any cybersecurity 

breach from happening rather than repairing issues that have not been prevented. SBD is a framework that aids 

organisations to constantly manage, monitor and maintain their cybersecurity risk governance and management.  
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In general, incorporating security from the early development lifecycle of a software could significantly reduce 

the attack surface, which can be achieved by taking actions such as keeping the attack surface small, implement-

ing authentication for different components of the software, encrypting confidential data, constantly monitoring 

inputs and keep components of the system separated. Lastly, treating the project as a living system and there-

fore, continually scanning and reviewing for security-related weaknesses can further reduce the likelihood of a 

breach [A2]. 

In 5G EPICENTRE, SBD is utilised for addressing security and privacy threats from the early stages of the devel-

opment, as PPDR is a domain that requires resilient communication that can cope with emergencies and crises. 

Thus, the communication network shall be protected against not allowed monitoring and intrusion. A detailed 

analysis of the SBD, its lifecycle, the roles, and responsibilities of individuals involved in the different phases of 

the system development lifecycle (SDLC), including the project manager, developer, security officer and system 

administrator, is provided in D1.5: “Security-by-design toolkit”. 

Unified Modelling Language 

Unified Modelling Language (UML) is a modelling language that is used for visualising the design of a system in a 

common, standardised way. As it is a simplified visual tool rather than a programming language, it can be utilised 

as a common medium for individuals from different backgrounds that should cooperate for the design and de-

velopment of a system, such as software engineers, system architects and business analysts. However, UML does 

not inherently contain security features nor does consider security aspects in its execution. SecureUML and UM-

Lsec are UML extensions that have been created to fill this gap and address security concerns from the beginning 

of the SDLC. The integration of security can prevent negligence with regards to security, as it is constantly re-

minded during the design and development phases. Thus, security violations are continuously considered and 

examined, which makes any system security-centric.  

SecureUML is based on role-defined access control whilst imposing authorisation constraints. Through this ex-

tension, roles and access levels are defined via tags in the model design, such as User, Role, and Permission. An 

example showcasing the usefulness of SecureUML models is their ability to generate access control infrastruc-

tures that prevent errors during the implementation of access control policies and enhance the development of 

secure systems. 

On the other hand, UMLsec is a UML profile extension that evaluates a project’s specifications for any vulnera-

bility by encapsulating security engineering patterns. It is a tool that can address security from an early stage and 

can be utilised by developers who are not proficient in security aspects. Any system-related weaknesses are 

expressed as checklists that are made available to the developers, therefore, simplifying the process of security 

consideration and implementation [A3]. 

Both SecureUML and UMLsec extensions are valuable tools for any security-oriented UML-based system design. 

Considering the analysis of Security Processes that are foreseen in 5G EPICENTRE, as presented in D1.5: “Security-

by-design toolkit”, and the requirements of the project, UMLsec is the most suitable extension to use, as it has 

a straightforward approach and a dedicated separation of roles per user with their respective activities and re-

sponsibilities. 

SecDevOps 

DevOps is the approach encompassing a set of cultural values together with the necessary tools and practices 

that move the step of continuous development of software to the production environment [A4] linking the de-

velopment team to the operations team. SecDevOps implements the SBD principle by using automated security 

review of code and automated application security testing. It is the process of integrating secure development 

best practices and methodologies into development and deployment processes. 
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Digital signatures 

Digital signatures are recognized as an important approach for maintaining the integrity of any data transferred 

all around the web. It’s an overall appropriate solution that provides much in the way of trust and security, in a 

world where credentials are at constant risk of being stolen and any machine is at constant risk for abuse, such 

as bitcoin mining. Typically, digital signatures are used for signing emails, or to sign apps in popular stores such 

as in Google Play or Apple’s App Stores supported using TLS certificates.  

Policies 

Policies incorporate in a set of rules, the important knowledge about how organizations should comply. They 

may target different purposes, such as the legal requirements, technical constraints and avoid repeating mis-

takes. The rules dictating the policies can be written and can also be established conventionally as part of the 

culture of an organization. Policies can be manually enforced, encoded in software, or even specified declara-

tively. 

By decoupling the policies from the software, it will help the organizations to adapt to the external environment, 

avoiding coding them in advance at the time the application was developed. Policies specified declaratively de-

couple them from the code. They can be updated at any moment, without recompiling or redeploying, and can 

also be enforced automatically. Such an approach will contribute to deploying software services at scale. It also 

turns them suitable to changing business requirements, improves the ability to discover violations and conflicts, 

increases the consistency of policy compliance, and mitigates the risk of human error.  

Policies can be useful to describe the way how a cluster should be deployed. They can dictate the allowed net-

work routes, impose rate limits, or identify which servers are trusted. Authorizations are examples of policies 

governing who can take the actions over which resources.  For example, a cloud computing service could answer 

questions such as: “can compute capacity be added?”; “to which regions can that capacity be added?”; and even 
identify which instances are not running in the correct region. 

By putting policies early on, it will allow applying CI/CD security to automate checks of this important pipeline. 

Policies can then be stored in documents and provide the source for permissions. 

Authentication and authorization 

The adoption of an Identity and Access Management (IAM) framework of policies enables organizations with 

security capabilities to ensure that users have the appropriate access by managing users’ permissions, be it indi-
viduals, or groups. The framework can allow or deny access to the available resources according to the underlin-

ing categories of the assets to be securely managed, including the role of users, organizations, geography, etc. 

Administrators define the credentials for their users and when they access them, those credentials are requested 

and validated before granting them access to the requested resources. Moreover, the requested context is eval-

uated against the defined policies and after that, with all the policies in place, a specific and single unique access 

to the resource been requested is provided. 

Compliance auditing 

Compliance is about regulations and checking a list of methodologies to be applied. Continuously checking com-

pliance after releasing software, is a very important activity to assure that the released software is still up to 

date, regarding security aspects and others. It’s also useful to verify such compliance using appropriate frame-

works such as GDPR and NIST PCI DSS.  

This endeavour should start in the early stages by performing experiments and engaging the compliance teams. 

It will be important to depart from an approach in terms of security by considering the basics. Therefore, it will 

be important to bring visibility over the assets and take inventories of the cloud infrastructure to that aim. In 
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case they are not made visible, it will not be possible to apply security to them. Therefore, it will be important to 

start with visibility in place, before complexly is increased, and then implement policy as guardrails. After that, 

the focus should be put on automation, to reduce human error by assuring continuous assessment for security, 

and finally, plan for scale. 

Supply chain security 

The usage of images registries can contribute to security and prevent cyber-attacks.  Attackers realized that they 

are capable to pull off a supply chain attack such as in the SolarWinds attack [A5]. Supply chain attack hackers 

got into SolarWinds source code repository, and they inserted malicious code. After that, they pushed out their 

hacked code to up to 180,000 customers. Moreover, they also included a backdoor to install additional code on 

deployed systems.   

The concept of a secure software supply chain can be applied to assessing the security of image registries. Those 

will contribute to streamlining the complexities to have secure environments for running containers. It will be 

important to discuss the best way to collect data concerning the security of registries. This security mechanism 

can be implemented by scripts, or manually, by collecting the registry assessment, which can be achieved 

through parallel work with compliance teams.  Container lifecycle management will help to secure Cloud-native 

solutions. It will bring security controls, namely achieved by the promotion of images before their deployment. 

The second part of custom policies will allow the organizations to better understand their requirements. 

Cloud-native security specifications 

Supported using the best security practices and standards, this section specifies the aspects aiming to protect 

Cloud-native applications as part of Security and Privacy Framework, specifically tailored to protect the different 

layers of the 5G-EPICENTRE architecture. The layers comprise the infrastructure of the Cloud, Kubernetes Cluster 

Layer, and the Application Code running in containers and integrating the best security practices offered by Ku-

bernetes [A6]. 

This document assumes the adoption of Docker as a container technology and Kubernetes as the orchestration 

technology to implement the Cloud-native approach by the 5G-EPICENTRE project. 

Zero-Trust model 

The Privacy and Security Framework follows the concept of Zero-Trust. This is defined by a premise where secu-

rity is never granted implicitly; instead, access control should be continuously verified. This cybersecurity para-

digm has an end-to-end architecture that encompasses identities, credentials, endpoints, operations, among 

others. Traditionally, the focus of restrictions is on the perimeter, and after successful authentication, minor 

security policies are applied to the access of the different services. With such an approach, by default, a profile 

with the lower level of permissions is assigned to all users and further permissions are granted as required.  

Namespaces and network policies 

Namespaces contribute to protecting edge privacy by isolating the administration of tenants in case of quota 

resource management. Despite this segmentation, this support is not sufficiently capable to avoid exploitations 

such as [A7]. Similar scenarios can be prevented by setting up policies to restrict traffic between namespaces, 

pods, and external networks.   

A network policy specification consists of specifying the pods that will be subject to the policy, or to which types 

of policies, when applied to ingress and/or egress. In the case of ingress rules, they are applied to inbound traffic 

to the target pods, and egress rules are applied to outbound traffic from the target pods. Those restrictions 

comprise the IP address blocks, namespace, labels, protocols, and ports that are able to communicate. Because 
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policies are additive, restrictions applied to the traffic result from the combination of the different ingress and 

egress rules. 

Each rule is comprised of a NetworkPolicyPeer for selecting pods on the other side of the connection to/from 

which traffic is allowed, through a Classless Inter-Domain Routing (CIDR) notation that specifies IP address blocks, 

namespaces, or pod labels; and a NetworkPolicyPort that allows to explicitly specify ports or protocols that may 

communicate with the pods.  

Infrastructure and Southbound security 

This section provides the infrastructure and southbound security specifications for infrastructure and federation 

layers of the 5G-EPICENTRE architecture. 

Cloud 

Service Based Providers (SBP) can select from VMs, containers, public, private or hybrid cloud. The choice will 

depend on the culture, their subscriber base, in-house skill sets, etc. It may include co-located computers, or a 

corporate data centre as the trusted computing basis for Kubernetes clusters.  

The design of a system architecture is tied to the Cloud selection, needed to identify possible threats associated 

with cloud systems. If the Cloud layer is unsafe or misconfigured, the security risk of their components will in-

crease.  

The access to the Kubernetes control plane is provided by the API Server. It also includes the kubelet, and other 

core components that cooperate to schedule and run the workloads in the cluster. Similar to the physical access 

to a machine or Secure Shell (SSH) access, also the control plane should be carefully controlled. The flexibility of 

the Kubernetes access control system allows to customize users’ controls to support the implementation of spe-
cific requirements, but that flexibility raises security risks. The access to the API Server should be restricted to a 

set of IP addresses and should not be available to the public on the internet.  

Nodes should only accept connections from the control plane, on the defined ports, using network access control 

lists. Thus, if possible, these nodes should not be completely accessible to the public internet.  

The Kubernetes control plane and nodes require permissions from each cloud provider. For the resources it 

needs to manage, it's better to give the cluster cloud provider access that follows the principle of least privilege.  

The control plane should be the only one with access to etcd as the datastore for Kubernetes. It is possible to 

use etcd via TLS, according to the etcd documentation. 

In the context of Kubernetes, etcd contains the state of the whole cluster, which includes Secrets. Therefore, it 

will be particularly important to encrypt the data storage. Encryption is the process of securely encoding data to 

safeguard its confidentiality. Encryption at rest refers to the use of symmetric encryption to encrypt and decrypt 

large volumes of data. Encrypting all storage at rest is a good practice in general. 

Kubernetes  

This section addresses the safeguards for the Kubernetes [A6] cluster's Infrastructure comprising the securing, 

the cluster's customizable components and keeping the apps in the cluster safe. To that aim, this section dis-

cusses the different approaches to have those components secure, supported using Role-Based Access Control 

(RBAC) [A7], authentication and authorization, and the use of secrets.  

It is important to follow the recommendations to protect the cluster from accidental or malicious access.  

An effort must be done to collect information on the surface of applications that present a higher exposure to 

attacks and from those, which, in case of attack, produce a bigger impact on the entire system. For instance, if 

an application includes an essential service A and other service B subject to a resource exhaustion attack, the 
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danger of service A becoming compromised increases considerably if resources of service B are not limited. Next, 

the areas of security concern and specifications for safeguarding Kubernetes workloads are addressed. 

Node and Container runtime hardening. The security of the container-to-host barrier should be considered, and 

some examples of vulnerabilities are presented in Ruby YAML parsing (CVE-2013-0156) and Shellshock (CVE-

2014-6271).  

RBAC. Role-based access control (RBAC) represents a method to control access to a computer or network re-

sources. It is based on roles associated with individual users in an organization.  

A minimal security requirement is to enable RBAC in the cluster. Latest versions have RBAC enabled by default, 

which departs from the least privilege for humans and programs using the Kubernetes API. An appropriate con-

figuration should enforce that each component runs with the most restrictive permissions and also that trusted 

components do not open doors for less privileged users. 

The Kubernetes RBAC API comprises four kinds of Kubernetes object: Role, ClusterRole, RoleBinding and Cluster-

RoleBinding. An RBAC Role or ClusterRole contains rules that represent a set of additive permissions.  

For humans, it might make sense to integrate authentication with corporate identity systems, and Kubernetes 

already provides plug-ins to implement custom integration authentication processes. Namely, integration with 

any compliant OpenID provider, such as Google and GitHub, is possible.   

Authentication and authorization. The users access the Kubernetes API through the usage of kubectl, client 

libraries, or by REST requests. Both human users and Kubernetes service accounts can be authorized for API 

access. In a typical Kubernetes cluster, the API serves on port 443, protected by TLS. The API server presents a 

certificate signed using a private Certificate Authority (CA), or based on a public key infrastructure linked to a 

generally recognized CA. If a given cluster uses a private certificate authority, a copy of that CA certificate should 

be configured on the client, so that it is possible to trust the connection and be confident it was not intercepted.  

A client can present a TLS client certificate at this stage. Once TLS is established, the HTTP request moves to the 

Authentication step. There, a cluster creation script, or a cluster admin takes the responsibility to configure the 

API server to run one or more Authenticator modules.  

The input to the authentication step is the HTTP request. It examines the headers and/or client certificate. Au-

thentication modules include client certificates, password, and plain tokens, bootstrap tokens, and JSON Web 

Tokens for service accounts. Multiple authentication modules can be specified, in which case each one is tried in 

sequence until one of them has succeeded. If the request cannot be authenticated, it is rejected with HTTP status 

code 401. Otherwise, the user is authenticated with a specific username and is available to perform subsequent 

steps of his decision.  

Some authenticators also provide the group memberships of the user. While Kubernetes uses usernames for 

access control decisions and in request logging, it does not have a User object, nor does it store usernames or 

other information about users in its API.  

After requests are authenticated as coming from a specific user, the request is authorized. A request must in-

clude the username of the requester, the requested action, and the object targeted in the action. The request 

will be authorized in case of policy dives to permissions to that the user in order to complete the requested 

action. 

Secrets. A Secret is the Kubernetes object that can contain a small amount of sensitive data such as a password, 

a token, or a key. Secrets are also similar objects to ConfigMaps but are specifically intended to hold confidential 

data. Such information might otherwise be put in a pod specification or in a container image. Using a Secret 

means that developers do not need to include confidential data in their application code. 
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Because Secrets can be created independently of the Pods that use them, contributes to reduce the risk of the 

contents and data in that Secret being exposed along the workflow of creating, viewing, and editing pods. Ku-

bernetes, and applications that run in the cluster, can also take additional precautions with Secrets, such as 

avoiding writing confidential data to non-volatile storage. When creating a Secret, it is possible to define its type 

to help the programmatic handling of different kinds of confidential data. Kubernetes provides several built-in 

types for some common usage scenarios. These types vary in terms of the validations performed and the con-

straints Kubernetes imposes on them. 

Network access control. Network-level access control provides in-depth defence mechanisms, such as the pro-

tection against vulnerabilities, namely, the Heartbleed OpenSSL vulnerability (CVE-2014-0160) [A8]. 

The network policies can be used to limit inbound traffic to a pod, based on the namespace and labels of the 

originating pod, as well as the IP address for traffic coming from outside the cluster. With the same set of selec-

tors, the network policy can likewise limit outbound traffic. Restricting ingress to the own application namespace 

is a good start point. 

The Container Network Interface (CNI) provider takes the responsibility for enforcing network policies. A pro-

vider that implements the network policies should be used, such as Calico [A9]. 

In specific scenarios where an attacker has compromised one of the applications and exploited the container 

runtime or kernel, it is not possible to trust the node to enforce network access controls, therefore, it’s necessary 
to apply the ingress/egress rules at the network level. 

The limitation on the use of federating network policies across multiple Kubernetes clusters is related to the lack 

of granular access control at the network level.  

Pod Security Policies 

There exist three different isolation levels for pods in Kubernetes provided by pod security profiles. These profiles 

allow controlling how the pod activity is managed. This section will present the different regulations included in 

Kubernetes profiles, including Privileged, Baseline and Restricted that cover a wide range of security concerns. 

These regulations are cumulative and can range from extremely liberal to extremely narrow.  

By decoupling the definition of policies from its instantiation it will contribute to the understanding and to the 

communication across clusters, regardless of the underlying enforcement method. Mechanisms will be defined 

on a per-policy basis as they mature. Individual policies' enforcement techniques are not defined here.  

The security context defines privilege and access control settings for a Pod or Container. Security context settings 

include, but are not limited to: 

 Access Control: Permission to access an object based on user ID (UID) and group ID (GID).  

 Security Enhanced Linux (SELinux): Security labels are assigned to objects; Running as privileged or un-

privileged. 

 Linux Capabilities: Give a process some privileges, but not all the privileges of the root user. 

 AppArmor: Use program profiles to restrict the capabilities of individual programs. 

 Seccomp: Filter a process's system calls. 

 AllowPrivilegeEscalation: Controls whether a process can gain more privileges than its parent process. 

This boolean directly controls whether the no_new_privs flag gets set on the container process. Al-

lowPrivilegeEscalation is true always when the container run as Privileged or has CAP_SYS_ADMIN. 

 ReadOnlyRootFilesystem: Mounts the container's root filesystem as read-only. 
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Baseline 

The baseline is a minimally restrictive policy and prohibits privilege escalations. It allows using the default non-

specific Pod setup. A baseline policy is designed to be simple to implement for common containerized workloads 

while avoiding known privilege escalations. This strategy is envisioned for non-critical application operators and 

developers. Next, the details of the available controls are presented. 

HostProcess. Kubernetes introduced HostProcess functionality for clusters that include Windows nodes contain-

ers. Windows pods grant privileged access to the Windows node, by allowing HostProcess containers to execute. 

The basic policy forbids privileged access to the host.  

Host namespaces. Namespaces segregate resources within a single cluster. Within a namespace, resource names 

are unique, but not between namespaces. Each one of Kubernetes resources can only be assigned to one 

namespace, and namespaces cannot be nested inside one another. The namespace-based scope is restricted to 

namespaced items, including Deployments and Services and not to cluster-wide objects such as StorageClass, 

Nodes, PersistentVolumes, etc. Namespaces are suitable in scenarios with large teams, with users spread across 

several teams or projects.  

Privileged containers. A container cannot access any devices on the host by default, but a Privileged container 

can have access to all devices on the host. This gives the container almost complete access to the same resources 

as processes operating on the host. This is useful for containers aiming to use Linux features like network stack 

manipulation and device access. Most security methods are disabled by Privileged Pods, so, special attention is 

needed to the operations led by these Pods. 

Capabilities. According to the Linux kernel capabilities FAQ, a capability represents a token used by a process to 

prove that it is allowed to do an operation on an object. The capabilities are individual units of privilege in a Linux 

kernel that can be independently enabled or disabled. 

The most significant number of capabilities are required to influence the kernel/system, and they are used by 

the container runtime. Despite this, their use by processes operating inside the container is unusual. Some con-

tainers, however, require specific capabilities. For example, a container process requires setuid or setgid capa-

bilities to drop privileges. Therefore, it will be important to have a balance between security and productivity. 

HostPath Volumes. The files as part of containers are ephemeral because they live in running containers. In case 

of a container crash, these files are lost, because kubelet restarts the container in a clean state. A second problem 

arises when sharing files between containers running besides in the same pod. The Kubernetes volume is the 

abstraction mechanism that solves both problems.  

A Docker volume corresponds to a directory on disk or in another container. At its core, a volume is a directory 

accessible to the containers in a pod. The volume type defines the source location of the directory, the medium 

that backs it, and its contents. 

A hostPath volume mounts a file or directory from the host node’s filesystem into the pod.  

Therefore, the use of HostPath volumes must be forbidden. 

Host Ports. Although the limitation of port ranges for communication may seem as self-evident, the ones being 

exposed by the service should be the ones strictly necessary for communication or metric collection. 

The use of Host Ports should be forbidden, or at least significantly limited to a known list according to the specific 

purpose of the service. Therefore, it will be important to define how to expose applications running on the Ku-

bernetes cluster to the outside world and define how they can have access to the Kubernetes Pods from outside 

of the cluster. 

AppArmor. AppArmor is a Linux kernel security module that extends the usual Linux user and group permissions 

to limit the resources that applications can access. AppArmor can be configured for an application to limit its 
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attack surface and to provide further in-depth defence mechanisms. It is customized through profiles that are 

adjusted to give a certain program or container the access it requires, such as Linux capabilities, network access, 

file permissions, and so on. Each profile can be run in enforcing or complaining mode, where in the first blocking 

policies are enforced, originating blocks to prohibited resources, while in the second, it just reports the infrac-

tions. 

AppArmor can help to operate a more secure deployment by limiting what containers can do and/or providing 

better auditing capabilities through the usage of system logs.  

The runtime/default AppArmor profile is used by default on supported hosts. Overriding or removing the default 

AppArmor profile should be forbidden in a Kubernetes cluster, or, at least, be limited to a certain set of profiles. 

SELinux. Security-Enhanced Linux (SELinux) is a security architecture for Linux systems that allows administrators 

to define who can access the system. SELinux system is supported by using labels, wherein every single process 

has a label. Also, every computing resource object, such as a file, directory, and system object have a label. Policy 

rules control access between 51 labelled processes and labelled resource objects. The kernel enforces the appli-

cation of these rules.  

Some compliance and security requirements, as well as policies, can be codified as SELinux rules, which can pro-

vide developers with the flexibility to build different types of apps that don’t require manual auditing, while still 
serving as evidence of due diligence from a security perspective, which is something often required by large 

organizations. Setting a custom SELinux user or role option should be forbidden, as is changing the SELinux type. 

The /proc Mount Type. The /proc directory contains virtual files that are windows into the current status of the 

running Linux kernel.  The default /proc masks are set up to reduce the attack surface and this should be required. 

Seccomp. Seccomp is a security mechanism for Linux processes to filter system calls (syscalls) based on a set of 

defined rules. Applying seccomp profiles to containerized workloads is one of the key tasks when enhancing the 

security of the application deployment. Developers, site reliability engineers and infrastructure administrators 

have to work hand in hand to create, distribute and maintain the profiles over the application life-cycle. 

Kubernetes introduced an additional security layer on top of the existing seccomp support. Now, it is possible to 

have a securityContext defined in a field of Pods and their respective containers can be used to tune security 

related configurations of the generated workloads. This enhancement helps specify if the whole pod or a specific 

container should run as: 

 Unconfined: seccomp will not be enabled. 

 RuntimeDefault: the container runtimes default profile will be used. 

 Localhost: a local node profile will be applied, which is being referenced by a relative path to the seccomp 

profile root of the kubelet. 

Kubernetes now includes a kubelet feature gate SeccompDefault. It was initially included as an alpha feature 

state, meaning that it is disabled by default. It can be manually enabled for every single Kubernetes node. The 

feature changes the default seccomp profile from Unconfined to RuntimeDefault. In case it is not specified dif-

ferently in the pod manifest, then the feature will add a higher set of security constraints by using the default 

profile of the container runtime. CRI-O or container runtimes may implement these profiles differently and they 

also may differ in terms of hardware architectures. Those default profiles block the more dangerous syscall and 

allow a common number of other ones, which are unlikely or unsafe to be used in a containerized application. 

Therefore, it is not necessary to set the Seccomp profile to Unconfined. 

Sysctls. Sysctls can deactivate security measures affecting all containers on the host, therefore they should be 

avoided unless a "safe" subset is allowed. If a sysctl is namespaced in the container or Pod, and isolated from 

other Pods or processes on the same Node, it is deemed to be safe. 
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Privileged 

The Privileged policy is characterized by the absence of constraints and has no restrictions, thus granting a larger 

number of permissions. As result, some known privilege escalations are allowed under this policy. This policy 

should be applied to workloads controlled at the system and infrastructure levels by privileged, trusted users. 

This policy is characterized by the lack of imposed limitations, instead, an instantiated profile for allow-by-default 

enforcement methods is used. Next, the controls that should be enforced or disallowed are presented. 

Restricted. The restricted policy departs from the baseline profile and includes a significant number of con-

straints, following pod hardening best practices. It is aimed at security-critical application operators and devel-

opers, as well as lower-trust users. The controls stated below should be enforced or disallowed: 

 Volume Types: The policy restricts the use of non-core volume types to those described by PersistentVol-

umes, in addition to HostPath volumes. 

 Privilege Escalation: Privilege escalation through the use, for instance of set-user-ID or set-group-ID file 

mode, should be avoided. 

 Running as Non-root: Containers must be required to run as non-root users. 

 Non-root groups (optional): Containers should not be allowed to use a root primary or supplemental 

GID. 

 Seccomp: it must be expressly set in the Seccomp profile. The Unconfined profile, as well as the lack of 

a profile, are both forbidden. 

 Capabilities: Containers are only allowed to bring back the NET BIND SERVICE capability after dropping 

all other capabilities. 

Quality of Service. When a pod is created in a Kubernetes cluster it is possible to assign one of the following QoS 

classes: Guaranteed, Burstable and BestEffort. Next, the conditions to be met in the application of QoS classes 

are discussed.   

A pod can have assigned a QoS class of Guaranteed in the case: 

 Every container in the pod must have a memory limit and a memory request. 

 For every container in the pod, the memory limit must equal the memory request. 

 Every container in the pod must have a CPU limit and a CPU request. 

 For every container in the pod, the CPU limit must equal the CPU request. 

A pod is given a QoS class of Burstable in the case: 

 The pod does not meet the criteria for QoS class Guaranteed. 

 At least one container in the pod has a memory or CPU request. 

For a pod to be given a QoS class of BestEffort:  

 Containers in the Pod must not have any memory or CPU limits or requests. 

Network Policies. To manage the traffic flow at the IP address or port level of the Open Systems Interconnection 

Model (OSI) layer 3 or 4, the use of NetworkPolicies in Kubernetes for certain applications should be evaluated. 

A pod is able to describe how it can communicate with the different network entities, endpoints, and services 

using NetworkPolicies, an application-centric concept. A combination of the three IDs below is used to identify 

the entities with whom a Pod can communicate: 

 Other allowed pods. 

 Allowed namespaces. 

 IP blocks, which exception is the traffic to and from the node where a pod is running. This traffic is always 

allowed, regardless of the IP address of the pod or the node. 
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When defining based NetworkPolicy based in a pod or namespace, a selector will specify the allowed traffic to 

and from the pods matching the selector. Meanwhile, when IP based NetworkPolicies are created, the policies 

based on IP blocks (CIDR ranges) are defined. Network policies are implemented by the network plugin. To use 

network policies, it will be required to use a networking solution supporting NetworkPolicy. Creating a Network-

Policy resource without a controller that implements it, will not produce any effect. 

By default, pods are non-isolated and can accept traffic from any source. Pods become isolated by having a 

NetworkPolicy that selects them. Once there is a NetworkPolicy in a namespace selecting a particular pod, that 

pod will reject all connections that are not allowed by that NetworkPolicy, however, other pods in the namespace 

that are not yet selected by any NetworkPolicy will continue to accept all traffic. 

Network policies are additive, and, in that sense, they can conflict between them. In case a policy selects a pod, 

the pod is restricted to what is allowed by the union of those policies' ingress/egress rules. Thus, the order of 

evaluation does not affect the policy result. 

Therefore, in order to allow the network traffic between two pods, both the egress policies on the source pod 

and the ingress policy on the destination pod, need to allow the wanted traffic. If either the egress policy on the 

source or the ingress policy on the destination denies the traffic, the traffic will be denied. 

mTLS and TLS for Ingress. Strong application-layer authentication, such as mutual TLS (mTLS), can represent a 

solution to the problem of network-level access controls.  

The encryption of all the communications by the use of TLS handshake with the client ahead of time in case the 

application code needs to interact through TCP. Encrypting network communication between services will be 

important and mTLS authentication is a mechanism that allows for that verification, performing a two-sided ver-

ification over communications. 

The Kubernetes Ingress can help secure an Ingress resource by specifying a Secret that contains a TLS private key 

and a certificate. This Ingress resource only supports a single TLS port, 443, and assumes TLS termination at the 

ingress point (traffic to the Service and to the Pods are in plaintext). If the TLS configuration, in an Ingress, spec-

ifies different hosts, they are multiplexed on the same port according to the hostname specified through the SNI 

TLS extension (provided the Ingress controller supports SNI). The TLS secret must contain a certificate and a 

private key to use for TLS, named tls.crt and tls.key. 

Devops Security at Back-End Layer 

This section presents the DevOps security approaches at the backend layer, hardening images, supply chain se-

curity, container security, third party dependency, source code analysis tools and dynamic probing attacks and 

finally VM-level container isolation. Besides these, the already explained concept of SBD will also be followed. 

Hardening images 

This section presents the options for hardening the container images. They are: (i) restriction of the accessibility 

of the port; (ii) adoption of a strategy to reduce the data image size; (iii) implement a methodology to divide the 

segments of the network and reduce the overall exposure to the web. 

It will be important to restrict network port accessibility. During the creation of a container, a developer might 

allow access to additional network ports for troubleshooting or debugging purposes, but, during the execution 

phase, the open ports should be reduced to the possible minimum. 

It’s usual to maintain log files containing API secrets, and other data along the container image build process that 

won’t be in the final container image. Using pf.dockerignore, a specific set of files and folders can be explicitly 

defined to not be present in the build environment. This prevents the unintentional disclosure of any sensitive 

information or credentials. 
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A third approach for hardening is to shorten the base image length to make it as thin as feasible. By including the 

lower number of system files or apps in the container image, horizontal network movement possibilities are 

reduced, therefore, the chances of a container being hacked are also smaller. The images should depart from 

Alpine Linux container images in order to achieve this goal.  

Containers running in production mode should enforce a strict read-only policy. Any web service that is exposed 

to the public internet should have no unnecessary writeable hard drive locations. To store or handle client infor-

mation, the service should instead rely on secure network connections to databases. 

The fourth step is to properly partition the network based on the architecture of the application. As a result, 

public and private services can be divided, so that all containers are not placed on the same flat network. Web 

servers are an example of a service that can be included in a public network segment, although backend services, 

such as database containers, do not need to be exposed to the public internet. As a result, web services should 

only have a very narrow network link to the databases, reducing the risk of the databases being exposed to the 

internet, during some security breach. 

Supply chain security 

Container build, test, and orchestration are the stages in a supply chain of container images.  

Access control can be applied using well-defined access policies together with corporation ones in order to un-

derstand who is doing what. (Who is signing, who is promoting, who is sharing which build images, etc.). Image 

scanning is also a must at the binary level and it’s crucial to validate the security of a specific image using common 

vulnerabilities, usually specified in security vulnerability databases (CVE DB). Image signing is another way of 

guaranteeing the authenticity of the image, as well, as of the publisher. CI tools can also apply signatures and 

verify them before running, which prevents the execution of not genuine images.  

In terms of Image lifecycle management, it is important to always keep the installed image in its most updated 

version.  

Container security 

This section provides the specifications regarding the security of the container layer. The following topics are 

addressed:  vulnerability scanning and OS dependency security, image signing and enforcement, the definition 

of the privileged users, the use of container runtime classes. 

Vulnerability Scanning. Containers are checked for known vulnerabilities along the image build stage. Those 

vulnerabilities could be in the container image’s configuration, with the instructions for how to launch it, or in 
any of the components included as dependencies that the application requires. 

Image Signing and Enforcement. Despite Kubernetes not including native support for image signatures or their 

verification, to maintain a system of healthy containers, images for containers should be signed. 

For signing images, it is possible to include a specific tag or a digest. The image content can change over time 

and be overwritten by subsequent versions of the image. Because the digest is a SHA256 hash of the image 

content, that cannot be modified, and it is unique for each image. As a result, an image can be tagged with either 

image:tag or image@sha256:d15754... 

Docker Content Trust, [A10] Docker-developed method for signing images, is inextricably tied to Notary, another 

Docker-developed technology. Notary is a service that preserves manifest files signed by a trusted party for 

“trusted resources”. This means that all signed, or soon-to-be-signed images are “trusted resources” for which 
manifest files are available in Docker Content Trust. The manifest files are signed with a private key and give a 

1:1 mapping between tags and digests.  

Connaisseur [A11] is an example of a Kubernetes admission controller to increase security. It allows only signed 

images in a cluster and ensures only trusted and unmodified content is deployed. To do so, it intercepts resource 
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creation or update requests, sent to the Kubernetes cluster, identifies all container images, and verifies their 

signatures against pre-configured public keys. Based on the result, it either accepts or denies those requests. 

Privileged users. It will be important that the users created within each container will have the least amount of 

operating system permissions needed to accomplish the purpose of the container. This is aligned with the Zero-

Trust model, already presented in Section Annex I: Cloud-native security. 

Container runtime classes. Runtime classes for containers are able to bring additional isolation. RuntimeClass is 

a feature for configuring the container’s runtime. Containers in a pod are operated using the container runtime 
configuration. To achieve a mix of performance and security, it is possible to assign various RuntimeClasses to 

separate Pods. For example, if a given workload requires a high degree of data protection, those Pods can be 

scheduled to operate in a container runtime supported by the use of hardware virtualization. Therefore, it will 

be possible to benefit from the alternative runtime’s improved isolation at the cost of some additional overhead. 

RuntimeClass may also be used to run several Pods with the same container runtime with different configura-

tions. 

Third-Party dependency, source code analysis tools and dynamic probing attacks 

It’s important to regularly perform a scan on applications' third-party libraries for known security vulnerabilities. 

Such a process may be performed automatically in any programming language. 

Most programming languages allow the assessment of the source code for any potentially dangerous coding 

practices. Source code analysis tools, known as Static Application Security Testing (SAST) tools, can help to assess 

source code or compiled versions of code to help find security flaws. SAST tools can be added to the Interface 

Development Environments (IDE) and used to detect issues during software development. The achieved feed-

back can save time and effort, especially in comparison to finding later vulnerabilities across the development 

cycle.  

The adoption of automated tools that can scan codebases for common security problems whenever possible 

should be considered. Automated tools exist to test some of the most well-known service threats against ser-

vices, including SQL injection, CSRF, and XSS. The OWASP Zed Attack proxy tool is one of the most popular dy-

namic analysis tools. An extensive list of the tools is available at [A12]. 

VM-level container isolation 

Traditional NFV decouples NFs from hardware, where VNFs running on VMs are interconnected to serve as build-

ing blocks for the setup of virtualized environments. eMBB, mMTC and URLLC often contradict in terms of re-

quirements. Despite that, their needs can be satisfied through Cloud-native technologies, both at the network 

edge and at the network core. To this end, containerization has emerged as a key enabling software technology, 

particularly lending itself to deploying Cloud-native applications.  

Containers can be defined as ‘packages’, containing all the software code and dependencies so that the applica-
tion can be executed rapidly and reliably in different computing environments. By utilizing containers, developers 

break down their purpose-built hardware and software solutions into packages of microservices and implement 

them in containers. To this end, application component instances are built to be executed inside containerised 

environments, such as Docker and Kubernetes. These can tap into cloud-based support layer services (such as 

databases and middleware) that also run as microservices inside their own containers.  

While not mutually exclusive, containers and VMs often represent different approaches, each with its own sets 

of pros and cons. Containers consume much less in both memory and disk space and are much faster to start. 

VMs provide more isolation and better security. The VM Hypervisor makes partitions of the physical resources 

and makes isolated entities and allows each VM to run independently. Isolation and Abstraction characteristics 

of the Hypervisor offer an additional security feature. In case if any VM is compromised, Hypervisor removes this 

VM and restores it to pre-attack state. However, the heavy footprint of current NFV platforms hinders the use 
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of VMs at the network edge. Security-by-design philosophy must be rigorously applied so as not to compromise 

security aspects during the transformation from monolithic VM-based approaches to container-based ap-

proaches. 

VMs and containers have different architectures, though they share some similarities. Both containers and VMs 

provide isolation to varying degrees. VMs are self-sufficient, have their own operating system and do not share 

resources with other VMs. Containers share hosts with other containers, complicating the idea of a secure 

boundary. 

A viable approach, concerning security, could be to deploy Kubernetes clusters within VMs. A Kubernetes Virtu-

alized Infrastructure Manager (VIM) can coexist with a conventional (e.g., OpenStack) VIM, sharing resources 

under a common orchestrator (e.g., ETSI OSM). Containers with the same security requirements can be grouped 

in the same VM, as VMs have better isolation. Based on the criticality/security requirements we can define 3 

security perimeters described below and as depicted in Figure 12:   

 Security perimeter 0. Contains only VMs of high security requirements. The VMs are in dedicated (phys-

ical) servers. The VNFs/CNFs with high security requirements are put in such VMs. 

 Security perimeter 1. Also contains VMs with low security requirements, shared in the same servers. 

VNFs/CNFs with different security requirements are put in separate VMs (but in the same physical ma-

chine). The isolation is ensured by the hypervisor (Nova in Openstack). 

 Security perimeter 2. Contains the applications and everything else.  

 

a) Security perimeter 0, b) security perimeter 1, c) security perimeter 2 

Figure 12: Security perimeters and VNF/CNF placement 
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Annex II: Proposed Security and Privacy Framework – Background 

The adoption of Service Mesh 

The classical in-depth network security approaches, such as perimeter firewalls cannot be easily applied to Cloud-

native scenarios, such as the ones envisioned by 5G-EPICENTRE container-based approaches. These require finer 

control regarding the network communications between all the different containers.  

In the literature, the Service Mesh concept is discussed as a Cloud-native approach to bring additional security 

features. This concept can support different security capabilities including logging of API traffic, observability 

tagging, network traffic encryption, authentication, and authorization. Beyond the centralized management of 

the policies, it can also be used to support policy enforcement between different edge/cloud network traffic in 

Cloud-native 5G scenarios.  

A Mesh entails a group of hosts that are coordinated to provide a consistent network topology. A Service Mesh 

is a method that allows having visibility and control of how the different components of an application share 

data. A Service Mesh is a dedicated infrastructure layer included directly in an application. Considering its visibil-

ity over the infrastructure layer it can report the performance of the interactions occurring between the different 

components. It also facilitates the optimization of communication, avoiding "downtime", as the application 

evolves. Each component of the application is a service depending on others to meet the needs of users.  

A Service Mesh introduces a dedicated infrastructure supporting microservices-based application services such 

as authentication and authorization, and security monitoring. In the case of Cloud-native applications, created 

in a microservice architecture, the Service Mesh is a way of encompassing a large number of different services 

in a functional application. 

In the case of a security incident or other error, Service Mesh logs can be used to identify the root cause of the 

incident, since it records the interactions between the different services. 

The Service Mesh concept mainly relies on the usage of network proxies (the sidecars), deployed together with 

each container instance, for intercepting and controlling the network traffic among microservices. They allow 

monitoring and are suitable for security-related concerns. They also offer an abstraction layer for individual ser-

vices or applications, by providing a sidecar data plane at every app (CNF container).  

Service Mesh can intercept all ingress and egress container traffic. This capability enables CNF sidecar traffic 

capture, including intra-node CNF traffic and preencryption tapping, and reduces SSL load for brokers. The service 

proxy easily integrates with existing infrastructure, provides full packet visibility, is scalable and extensible, and 

uses existing packet broker APIs. 

The Service Mesh does not introduce functionalities to the application's execution environment. It manages the 

communication between the services from the individual context to an infrastructure layer. The requests are 

routed between microservices using proxies in their own infrastructure layer. The proxies implementing the Ser-

vice Mesh are called sidecars because they are decoupled and executed in parallel from each service. 

Traffic management, security and visibility are the important features that will contribute to the adoption of 

distributed microservice architectures. Traffic management includes the configuration of the rules and traffic 

routing. It also makes possible the control of the traffic flow and communication between services. Security 

capabilities can be applied over the communication channels for managing the authentication, authorization, 

and encryption of the communication of services at scale. It also includes the capabilities to consistently apply 

the policies to different protocols and execution environments, while not demanding changes in applications.   

Generally, modern applications comprise several business services in a network-dependent on each other. In 

case of some services become overloaded, the Service Mesh can forward requests from one service to the next 

and optimize how all those elements can work together. 
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Each new service added to the application, or a new instance of an existing service executed in a container, 

introduces new points for possible failures, meaning additional complexity for the communication environment. 

In such a complex microservice architecture, it is difficult to locate where problems occur without a Service Mesh. 

This happens because the Service Mesh also captures all aspects of service-to-service communication as perfor-

mance metrics. Over time, it is possible to apply the data provided by the Service Mesh to the inter-service 

communication rules to increase the efficiency and reliability of service requests. 

For example, in case a given service fails, the Service Mesh can register the downtime of the service. Since the 

service failure periods accumulate, it is possible to write rules to determine the ideal waiting time before making 

a new attempt. Such a process will contribute to having the system not overloaded with unnecessary attempts.  

Different approaches can be adopted for deploying Service Mesh components. Therefore, they can be embedded 

into the application as a microservice, coupling them to the application code by implementing them as libraries, 

or implementing them as service proxies independently of application code. This last alternative has been high-

lighted as the most efficient one in terms of scalability and flexibility in many scenarios supporting infrastructure 

for microservices-based applications. 

Without the Service Mesh, it would be necessary to code each microservice with the logic that manages service-

to-service communication, resulting in less time for programmers to focus on business goals. 

Service Mesh will facilitate the DevOps teams by reducing the complexity of deployments. With a Service Mesh, 

the DevOps teams can deal with the change from monolithic applications to Cloud-native applications, including 

the collection of small, independent, and lightly coupled microservice applications, at a reduced effort. 

Mutual TLS (mTLS) is an important tool that enables to securely encrypt and trust in the communications occur-

ring between the different components in the network, which is increasingly important to Service Mesh deploy-

ments. 

Technologies and tools 

This section presents the technologies and tools used in the instantiation of the HSPF. 

Istio 

Istio [B1] is a realization of an open-source Service Mesh platform enabling to control the way how microservices 

share data between them. It comprises a set of layered distributed applications providing traffic management, 

security, and observability at the Service Mesh level. 

It contains concepts as roles and bindings and allows the granting of permissions to identities, throughout RBAC 

policies. Their APIs can enforce access control at mesh, namespace and service levels. As a result of applying 

policies over a Kubernetes' network, its benefits result in the ability to configure security between pod or service 

communication at the network and application layers. 

The available APIs provide support for integration with other components, such as telemetry or policies systems. 

It was also developed to be executed over distinct environments, including on-premises, hosted in the cloud, 

Kubernetes containers or even in services running on VMs.  

Istio is an open-source technology, which aims to bring security, management, and monitoring of services to a 

more transparent and centralized level. It is distinguished by its properties of load balancing, secure service-to-

service communication (using TLS encryption) and access control, which are achieved through a pluggable policy 

layer. It runs over Kubernetes and allows a very large set of operations, such as: adding applications to a cluster; 

extending the mesh to other clusters; connect VMs or other machines located outside of Kubernetes. In terms 

of internal operations, its logical components are split into data and control plans.  
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The data plan comprises Envoy proxies as sidecars handling the compatibility issues. Those sidecars proxies in-

termediate the communication with other proxies and run parallel to the microservice. All those proxies together 

form a mesh network intercepting the communication between microservices, mediating, and controlling all 

network communications and collecting telemetry. Communications are mediated by proxies, specially designed 

to intercept, and route all the network traffic.  

At the control plane, the proxies provide the capabilities to configure the components that apply policies and 

collect telemetry beyond the management and configuration for routing the traffic. 

Kiali 

Kiali [B2] is a management console for service fabrics based on Istio. It provides the representation of the struc-

ture of the service fabric by inferring the traffic topology and displays the health of the fabric. Kiali provides 

detailed metrics and allows the creation of validation policies. It also allows integration with Grafana and Jaeger. 

It was one of the used tools to collect metrics, observe the health of microservices and even to apply security 

policies. It also helps to define, validate and observe the network of Istio services.  

Kiali provides an interactive graphical view of each namespace in real-time that provides visibility into features 

such as circuit breakers, request rates, latency and even traffic flow graphs. The information made available is 

related to the components at various levels, applications, services, and workloads. It can display interactions 

with contextual information or in graphical form. Kiali also offers the ability to validate Istio configurations such 

as gateways, destination rules, virtual services, fabric policies and much more.  

Grafana 

Grafana [B3] is an open-source monitoring solution that can be used to configure dashboards for Istio. Grafana 

can help monitoring the health of Istio and applications in the service fabric. This tool allows to study, analyze 

and monitor data over a period of time. It may also be used to represent the user behaviour, application behav-

iour, how often errors arise in production or in a pre-production environment, types of errors that appear, and 

contextual scenarios, among other scenarios.  

Dashboards extract information from connected data sources such as Graphite, Prometheus, Influx DB, Elas-

ticSearch, MySQL, PostgreSQL etc. These are some of the many data sources that Grafana supports by default. 

Dashboards contain a range of visualization options, such as geographic maps, heat maps, histograms, among 

others. Basically, it provides all the variety of tables and graphs that a business typically requires to analyse data.  

Curiefense 

Curiefense [B4] is an API-first, GitOps-based web-defense HTTP-Filter adapter for Envoy Proxy. It provides various 

security technologies (WAF, application layer DDoS protection, bot management and more) along with real-time 

traffic and transparency monitoring. Curiefense is fully programmatically controllable. All configuration data 

(sets of security rules, policies, etc.) can be kept individually or as different branches for different environments 

according to the user needs. It adds traffic filtering capabilities to containers, service fabrics, inbound gateways 

and many other components of modern topologies.  

Curiefense eliminates the need for external solutions; all traffic filtering is done within its perimeter. Traditional 

traffic filtering is performed outside the protected entity (application, service, API, etc.). Traffic filtering can be 

configured differently for different environments (e.g., dev / qa / prod), and all can be administered from a cen-

tral cluster. 

Curiefense may be used to protect different types of resources, such as a website, an application, a service or an 

API. Users represent a source of traffic trying to access that resource. Incoming traffic passes through Envoy, 
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which uses Curiefense as an HTTP filter, so the most hostile requests will be blocked. The other components 

represent the Curiefense platform itself, as follows: 

 Proxy Curiefense connects to Envoy proxy and performs traffic filtering. 

 DB logs: Curiefense stores traffic data (headers, payloads, etc.) of all requests here. 

 Metrics: A Prometheus traffic metrics store. 

 Dashboard: Dashboard(s) using Grafana with visual displays of traffic metrics. 

 Web UI: Curiefense web console for platform configuration. 

 Configuration server, a service that:  

a) Receives web UI configuration edits. 

b) Receives configuration edits from API calls. 

c) Creates new configuration versions in response to edits. 

d) Stores the new version in one or more Cloud Storage ranges. 

 Cloud Storage: Stores versioned configurations. Each Curiefense proxy periodically checks the Cloud 

Storage, and when a new version is found there, the proxy downloads and updates its security posture. 

Open Policy Agent 

The Open Policy Agent (OPA) [B5] is an open-source, general-purpose policy engine that unifies the implemen-

tation of policy enforcement procedures across the IT environments, such as the ones involving Cloud-native 

applications. OPA was originally created by Styra and has since been accepted by the CNCF.  OPA provides a high-

level declarative language to specify policy as code, and simple APIs to offload policy decision-making from soft-

ware. OPA can enforce policies in microservices, Kubernetes, CI/CD pipelines, API gateways, and more. OPA can 

be used to control authorization, admission, and other policies in Cloud-native environments, with a focus on 

Kubernetes. 

OPA is a lightweight general-purpose policy engine that can be co-located to the existing services. OPA can be 

integrated as a sidecar, host-level daemon, or library. OPA allows to decouple policy decisions from software for 

policy enforcement.  It also avoids the development of custom languages for policy management, including the 

definition of a syntax, semantics, and the development of an evaluation engine (that would need to be carefully 

designed, implemented, tested, documented, and then maintained to ensure correct behaviour and a positive 

user experience).  

OPA is a general-purpose policy engine that decouples policy decision-making from policy enforcement. Its high-

level declarative language provides intuitive ways of specifying policies. It can be used to enforce policies on 

several environments, namely on microservices and Kubernetes. Whereas Istio policies are limited to networks, 

OPA allows a more comprehensive strategy to implement distinct policies and take more control over deploy-

ments and containers. 

Services offload policy decisions to OPA by executing queries. OPA evaluates policies and data to produce query 

results for the client(s). Policies are written in a high-level declarative language and can be loaded dynamically 

into OPA remotely via APIs or through the local filesystem. 

Declarative policies in OPA’s policy are defined in Rego language. OPA generates policy decisions by evaluating 
the query input against policies and data. OPA and Rego can be used to describe many different policies and they 

are agnostic to the domain, such as in the following cases: 

 Which resources are allowed to each user. 

 Which traffic should be allowed to each subnet by the egress controller. 

 To which clusters, a certain workload must be deployed to. 

 From which locations can the registries binaries be downloaded from. 
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 Which OS capabilities may a container use. 

 To which periods of the day may the system can be accessed at. 

Policy decisions are not limited to simple yes/no or allow/deny answers. Like query inputs, policies can generate 

arbitrary structured data as output. An example of a security policy to be implemented can dictate that the 

servers should be reachable from the Internet and must not expose the insecure 'http' protocol. A second secu-

rity policy may involve the servers that are not allowed to expose the 'telnet' protocol. The policy needs to be 

enforced when servers, networks, and ports are provisioned, and the compliance team needs to periodically 

audit the system to find out if any servers are violating the policy. 

OPA is powering AQUA security solutions [B7] to control workload admission using Kubernetes attributes to shift-

left workload security and gain a clear perspective of the workload’s security posture. New Kubernetes Assurance 

Policies allow the application of dozens of out-of-the-box rules, or simply adding custom ones using regular ex-

pressions. 
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Annex III: Security Framework – Initial Experiments 

This section describes the preliminary experimental work regarding the proposed security framework pursuing 

the demonstration of concepts and respective validation of the solutions carried out in a Kubernetes cluster.  

The experimental work and its objectives are presented in Table 10. The first Networking experiment seeks to 

demonstrate aspects of networking and the communication aspects in Kubernetes. The Observability experi-

ment demonstrates the metrics helping to provide observance of network traffic through the use of a Service 

Mesh. The Security experiment aims to demonstrate security aspects in a cluster of Kubernetes.  

Table 10: List of experiments 

Experimental work Objective 

Networking  Demonstrate communication logic on a Kubernetes cluster 

Observability Demonstrate observability on a Kubernetes cluster 

Security Demonstrate security aspects on a Kubernetes cluster 

Machine Learning security: a DoS use case 
Demonstrate application of ML mechanisms applied to secu-

rity 

In the first experiment, Kubernetes and Istio capabilities were explored as technologies, helping in the imple-

mentation of secure distributed systems in microservices. It was possible to understand the communication 

mechanisms between applications, pods and containers and understand the role of exposed services of an ap-

plication. Moreover, such technologies also helped to understand the configurations need for external and in-

ternal accesses and how to expose internal applications to the Internet. 

From a second experiment, it was possible to explore the Kiali capabilities for monitoring a Service Mesh on the 

visualization of services, applications, pods, traffic, and the aggregation of their metrics. It was possible to un-

derstand how Kiali facilitates the orchestration and administration process of a Service Mesh. 

Regarding the third experiment, it was possible to infer that the Service Mesh concept is key for protecting dis-

tributed systems, namely by adding authorization and authentication, separately from the applications. 

In a fourth experiment, the use of ML to classify the ongoing traffic was explored. Since it is unlikely that a model 

achieves 100% accuracy, even considering the small size of the dataset (6623 instances), proper analysis has 

been conducted. It revealed that there were some issues regarding how packets have been aggregated. 

Table 11 presents the applications and scripts developed along with the implementation of the architecture, 

supporting the running experiments: 

Table 11: Applications and scripts  

Application/Script Description 

Netcap Tool to capture the traffic over a network interface 

Extractor Application to process the network packets  

MQTT Client MQTT Client to communicate to the message broker 

MQTT Attacker 
MQTT Client to run and perform DoS attacks to the message bro-

ker 

Patch Script to inject a container in the pod 
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The Netcap application allows capturing network packets over a network interface. The Extractor is the applica-

tion that departs from the process’s files in libpcap format to extract the network packets and produce a dataset. 

To that dataset, it will be applied an ML model to find out the anomalous network flows. The MQTT Client appli-

cation mimics the behaviour of the UEs as the application implements the MQTT protocol client for communi-

cating with a message broker. The MQTT client is the application running the DoS attack targeting the message 

broker. The Patch script is responsible for injecting in real-time a container into a pod. 

Networking Experience 

In this experiment the communication mechanisms between pods and containers in a Kubernetes cluster are 

explored. Moreover, the configuration of external and internal access to the cluster supported by the use of 

Service Mesh concepts supported in Istio technology was explored. Istio was installed in a Kubernetes cluster 

with ingressgateway and egressgateway components. Automatic sidecar injection has been set up. It was imple-

mented a communication scenario between services in a cluster. Some examples of types of communications 

include the ones occurring internally and externally to the cluster, including the inbound and outbound commu-

nications. 

  

Figure 13: Communication scenario between services  

Figure 13 illustrates the communication scenario between the httpbin and sleep applications. The ingressgate-

way component forwards external traffic to the httpbin service and egressgateway forwards internal traffic to 

the www.google.com website. The UE represents the equipment used to communicate with the httpbin service, 

the node terminal. 

Observability experiment 

The detection of attacks in real-time may avoid severe consequences over the business operations. That consists 

in trying to fix the issues promptly and reduce the costs (e.g., the ones related to downtime). To do that, it will 

be necessary to identify the tracing events until the root cause is found. After that, it will be also important to 

review and evaluate and even plan future improvements. In the case of distributed environments, such as Ku-

bernetes, that task will be particularly painful due to the number of components and complexity of their flows.   

Observability over the monitoring data has more value if data can be centralized instead of living in silos to be 

queried by everybody. Monitoring such an amount of data requires a scaling and flexible approach.  

Observability relies upon three pillars, such as tracing, logging, and metrics. Achieving observability in micro-

services in a Kubernetes cluster involves combining these three, as they represent the only way to understand 

complex environments. Metrics can provide the response to “what”. Logs help to answer the “why” and the 
traces provide the information of “where”. Trying to find specific logs in a pool of billions of logs of microservice 
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executions can take hours or even days. Moreover, the correlation of those logs across with the other metrics 

values turns out to be a very difficult task and, in the future, a lot of instrumentation will be required to extract 

the insights from the cluster. 

After the extraction process, there are still a few questions to be answered: 

 How do metrics and logs correlate? 

 How does data between different microservices correlate? 

 How to know where and when something will fail? 

Tracing is the technique that helps answer those questions. A trace provides information about the transaction 

or workflow in a distributed system. One way to achieve this is to have a distributed solution able to collect logs 

and process them to trigger the alerts in a well-established time-bound threshold. Such alerts should also trigger 

notifications to involved parties. These alerts will later help to troubleshoot the root cause of events.  

Therefore, it is of high importance to know how microservices are interconnected, from the design until the 

implementation phase while already in the production environment. This way, it will be possible to identify the 

anomalies and fix performance issues and reduce the Mean Time To Repair (MTTR).  Moreover, it will be im-

portant to understand the computing latency in each one of the microservices. The adoption of a distributed 

solution for tracing purposes can help to have observability over the ongoing processes, improve performance 

and leverage the adoption of proactive approaches rather than reactive ones.  

The monitoring solutions should be able to manage at scale and support for long term storage. Some technolo-

gies that meet those requirements are Prometheus and Thanos, Telegraph and InfluxDB, Victoria Metrics or even 

Cortex. 

The following experiment addresses the underline complexities to have observability over the ongoing traffic 

inside the Kubernetes cluster wherein two containers participate. This experiment, depicted in Figure 14, com-

prises inbound and outbound communication in the cluster. 

In the case of inbound communication, the istio-ingressgateway component acts as a gateway, allowing traffic 

to enter the cluster by exposing a port in a Kubernetes node. This traffic is forwarded to the httpbin service, 

which, in turn, will forward it into the httpbin container. This approach contributes to securing external applica-

tions to have and to have safe access to the ones within the cluster. 

In the case of outbound communication, the istio-egressgateway component acts as a gateway by letting the 

traffic in the cluster flow from inside to the outside. The egressgateway represents a convenient strategy to have 

applications running within the cluster that access the external API’s without jeopardizing the cluster's security. 
Despite not being visible in Figure 14, a sleep container communicates with the external service at Google. Such 

a service is defined within Istio's internal service register. For safer communication, traffic is forwarded to the 

egressgateway, which, in turn, redirects it to an external service. 

The next experiment explores the observability capabilities in a Service Mesh architecture. Kiali was the used 

technology, providing visibility over the communications between pods and containers. It was possible to under-

stand the offered opportunities from the adoption of a Service Mesh architecture and Kiali. 

This experiment started by deploying Istio into the cluster with an ingressgateway and egressgateway compo-

nents. This deployment also includes Prometheus and Kiali containers. In the next stage, the sidecars are injected 

into the running pods. The depicted communication scenario is like the Networking Experiment, as illustrated in 

Figure 13 and detailed in the corresponding section.  

Once the communication has started, using the Kiali dashboard, it was possible to visualize the network traffic 

as a result of the Application activity over the Service Mesh inside the cluster.  
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Figure 14: Kiali Network graph Mode in Istio 

Figure 15 depicts the volume (left chart) and duration (right chart) of the network traffic over a period of five 

minutes. Both graphics depict the traffic coming from the Istio ingressgateway regarding the outside communi-

cations to the httpbin and sleep containers, as well as the internal communications between these two contain-

ers. 

 

Figure 15: httpbin application metrics: order volume (left) and order duration (right) 

Internal communication experiment 

The experiment illustrated in Figure 16  did not require further communication configurations since Kubernetes 

enables the communication between httpbin and sleep without involving Istio. 

In the next step, the internal communication between httpbin and sleep was performed. The traffic was gener-

ated by having access to the sleep container running GET requests to the httpbin service at port 8000. 
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Figure 16: Internal communication diagram 

Inbound communication experiment 

The inbound traffic (from the outside of the cluster to the inside) requires some rules to be defined for redirecting 

Istio traffic. The gateway resource was used to configure the ingressgateway, and the Virtual Service was used 

to forward the communication from the ingressgateway to httpbin. 

 

Figure 17: Cluster Inbound Communication 

Figure 17 illustrates the inbound communication into the cluster. The Gateway component exposes the port 80 

on istio-ingressgateway, and Virtual Service forwards traffic received in the port 80 on istio-ingressgateway to 

httpbin service on port 8000. 

Figure 18 depicts the sequence diagram of the communication flows between the UE and httpbin. An HTTP GET 

request was made from the UE into the istio-ingressgateway service. After that, the request was forwarded to 

the httpbin. Considering that istio-ingressgateway is deployed as a service of type NodePort, that means that a 

port (31766 was the one used) has been opened in the node and the service is available, from the node terminal, 

on the exposed port. 
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Figure 18: Inbound Communication Sequence Diagram 

The next step was to proceed with the communication. It started by getting the node address and the exposed 

port and generating an HTTP GET request, which was successful. This request was made through the use of a curl 

command. 

Outbound communication experiment 

To demonstrate outbound communication of the resources such as the gateway, it was necessary to configure 

the egressgateway, a Virtual Service routing traffic and also a Service Entry to add the external service to Istio's 

services registry. 

  

Figure 19: Indoor-outdoor communication diagram 

Figure 19 illustrates the cluster outbound communication. The gateway component exposes the port 80 on the 

istio-egressgateway. The Virtual Service forwards traffic from the sleep pod to port 80 on the istio-egressgate-

way, and then from the istio-egressgateway pod to the external service at Google. 

The sequence diagram in Figure 20 describes the communication flows. Traffic was generated from HTTP GET 

requests, departing from the sleep container towards a Google service. 
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Figure 20: Outbound communication sequence diagram 

Kubernetes authorization and authentication policies experiment 

This experiment explored the application of security concepts in a cluster of Kubernetes using Istio. It was possi-

ble to understand how authorization and authentication mechanisms on applications contribute to a more se-

cure system. 

This experiment started by preparing a cluster environment with Istio installed besides ingressgateway and 

egressgateway components. Then, the sidecars were automatically injected. 

In this experiment, the Istio security policies were applied to demonstrate the capabilities related to security in 

a cluster. The communication scenario is like the Networking experience at Kubernetes as illustrated in Figure 

13 and detailed in the respective section.  

The following sections report on how the security concepts regarding authorization and authentication were 

applied. 

Authorization 

The authorization policies were enforced using the AuthorizationPolicy feature. A policy was applied to block all 

communications within the cluster, and it was possible to validate the expected behaviour since the request 

made to the httpbin was refused with a response containing the 403 Forbidden status code. The policy was 

removed, and another policy was applied to allow access control to the httpbin application, but simultaneously 

denying HTTP GET requests from a specific IP. 

The HTTP GET requests from the IP were classified as a threat, while the communications coming from other IP 

addresses were kept being allowed. In this sense, the policy was applied to block traffic originating from the sleep 

application. 

Finally, it was possible to depict the requests being made from the sleep application, being blocked. The policy 

was later removed, and all the communications were again allowed. 

Authentication 

Authentication policies may be enforced using the PeerAuthentication feature. Another sleep and httpbin appli-

cation were installed in a different namespace, this time without the Istio sidecar. This configuration had the 

purposed of demonstrating the authorization process in both secured and unsecured applications. 
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Then, the applications were deployed without the sidecars. The pods within the default namespace are made up 

of two containers, while pods within the no-sidecar namespace have only one container. 

A mesh-level mTLS policy was subsequently applied. This policy forces applications to accept only encrypted 

communications with mTLS. To easily test the effects of the policy, a script evaluated the communication be-

tween all applications. 

Then, the request being sent by the sleep application without the sidecar is refused, as expected, because the 

request did not comply with the mTLS policies, resulting in an HTTP code 403. 

Finally, the policy was removed, therefore, compliance with mTLS was no longer mandatory, and communication 

returned to the starting point. 

Machine Learning for automation of security: DoS experiment 

The previous experiments had the purpose to verify the use of third-party tools to justify their use in the HSPF. 

The experiment described in this Section explores the use of one ML technique to detect anomalies in the net-

work traffic in the Kubernetes cluster. It was possible to dive into the NIDS integration mechanisms and in the 

automation of the security of a system and its applications. 

In order to run this experiment, Istio was deployed in a Kubernetes cluster with the ingressgateway and 

egressgateway components. Next, the sidecars were injected into the netcap, extractor, mqtt-client and mqtt-

attacker applications. 

In this experiment, the involved processes in data collection, pre-processing and classification of the NIDS pipe-

line for traffic classification were implemented. To this end, an attack scenario in Kubernetes was defined.  

Figure 21 illustrates the experimental communication scenario, including applications such as message-broker, 

mqtt-client and mqtt-attacker. The mqtt-client application mimics the behaviour of an IoT device communicating 

with the message broker each twenty-second interval. The mqtt-attacker application launches a DoS attack on 

the monitoring agent every 120 seconds. 

 

Figure 21: Communication scenario 

Data Collection and Processing 

The collection of data was performed in the monitoring-agent container in the message-broker pod. Next, its 

netcap program starts capturing the network packets to be saved in a file in libpcap format. 

Once the data has been collected, the next stage for processing the data initiates. Herein, it was important to 

define the structure of the dataset and the selection of the relevant features to be extracted from the network 

packets. Considering that the chosen attack is not specific to the MQTT protocol, features related to it were 
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ignored. Given the nature of the attack, an analysis based on bidirectional communication flows was chosen, 

instead of a per-packet analysis. This decision was due to the need to have features, such as the number of 

packets and bytes, to allow the detection of anomalies. The rationale being aggregating packets into streams is 

implemented by the NFStream library. 

Table 12 presents the features attained from the dataset, extracted from the captured network packets.  

Table 12: List of features in a dataset 

Feature Description 

duration Flow duration 

src_ip Source IP address 

src_port Source port 

dst_ip Destination IP 

dst_port Destination port 

pkts Total packets 

bytes Total bytes 

pkts_fwd_sd Total packets in direction source→ destination 

pkts_bwd_ds Total packets in direction destination → source 

bytes_fwd_sd Total bytes in direction source→ destination 

bytes_bwd_ds Total bytes in direction destination→ source  

bytes_bwd_ds Flow duration 

NFStream was the Python library package providing aggregation capabilities to process the packets. By default, 

the NFStream library allows the extraction of the required features, presented in Table 12.  

The mqtt-attacker IP address (172.17.0.7) and mqtt-client (172.17.0.8) were used to classify traffic as normal (0) 

or anomalous (1). 

Table 13 shows a part of the final dataset including the labels from the classification stage including 6623 com-

munication flows. 

Table 13: Classified Dataset  

# flow src_ip dst_ip … duration pkts bytes Anomaly 

0 172.17.0.7 172.17.0.9 … 32389 8 4489 1 

1 172.17.0.7 172.17.0.9 … 32331 8 4489 1 

2 172.17.0.7 172.17.0.9 … 32373 8 4489 1 
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3 172.17.0.7 172.17.0.9 … 32349 8 4489 1 

4 172.17.0.7 172.17.0.9 … 32381 8 4489 1 

…        

6618 172.17.0.7 172.17.0.9 … 5 6 4297 1 

6619 172.17.0.7 172.17.0.9 … 3 6 4297 1 

6620 172.17.0.7 172.17.0.9 … 3 6 4297 1 

6621 172.17.0.7 172.17.0.9 … 3 6 4297 1 

6622 172.17.0.7 172.17.0.9 … 2 5 4198 1 

Training 

For the training phase, the following features were selected: duration, pkts, bytes, pkts_fwd, pkts_bwd, 

bytes_fwd and bytes_bwd. The features src_ip, src_port, dst_ip and dst_port, were excluded to avoid a wrong 

generalization of the algorithm, since all the flows originated from the IP address 172.17.0.7 were classified as 

anomalous. Random Forest [C1] was selected as the algorithm since it has been giving proof of good behaviour 

while dealing with problems of network anomaly detection. 

The model was trained and evaluated with a subset from the initial dataset. Figure 22 presents the confusion 

matrix depicting the performance of the model classifying the traffic. It is possible to depict, the model has cor-

rectly classified all samples in the test: including 14 samples of non-anomalous communication, 14 were classi-

fied as such, and of 1642 records of malignant communication, 1642 were classified accordingly. In this way, the 

model achieved 100% accuracy. 

 

Figure 22: Confusion Matrix 

Evaluation and validation 

The initial classification revealed an unbalanced set of 6560 anomalous flows, which is near 100 times greater 

than the number of non-anomalous flows, which were only 63.  
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The identified issues were related to the aggregation logic. The aggregation algorithm split the received flows, 

considering the origin port of each packet. Knowing that each launched attack represented 1024 connections to 

the message broker and that these happened simultaneously, then each communication flow had a different 

source port. Thus, the packet aggregator produced 1024 identical communication streams for each launched 

attack.  

Regarding the mqtt-client, the packet aggregator produced only a single communication flow for each execution, 

because only one connection was made per cycle. This can justify such a high discrepancy in the number of 

normal and abnormal traffic, leading to an unbalanced dataset and, consequently, justifying some over-fitting of 

the algorithm towards the abnormal traffic. After this analysis, it can be stated that the dataset and ML model 

generated is not suitable to be used due to the unbalanced data used in its training process. 

Security policies enforcement  

The objective of this experiment was to apply security mechanisms to the UC4 platform which includes several 

microservices in a Kubernetes cluster. These microservices communicate with each other and receive requests 

from outside of the cluster. The objective was to enforce the security policies for requests classified as anomalies 

that might be received by the aforementioned microservices. To meet that goal, two different options were 

explored. 

In the first, the policies were applied with Istio, that is, it was necessary to create a program that, upon receiving 

the traffic, evaluates it and applies policies as needed. This program was defined in a YAML file, which was later 

applied using a Kubectl command.  

The second solution extends the first one with the application of OPA, which was responsible for applying the 

defined policies. 

The objective was to create two distinct scenarios, demonstrating the application of run-time policies and thus 

block one/several attack/s. The distinct scenarios correspond to the two solutions presented in the following 

sub-sections. 

UC4 Scenario 

The UC4 platform represents the scenario in this experiment. It includes the following set of services: 

 End-user Device Simulator. 

 Message Broker. 

 PostgreSQL. 

 InfluxDB. 

 Telegraf. 

 Kapacitor. 

 Orchestrator. 

 Monitor. 

 Gateway. 

 WebRTC Server. 

 Portal. 

This experiment included the pods for the Server and another one for EMQX, containing the Envoy proxy and a 

worker container. The role of this worker was to capture the traffic to be processed and classified by an ML 

model. Finally, this worker performed requests to the Kubernetes control API to stop the communication from 

the attacker.  
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In the last control stage, two different approaches were tested. In the first, requests were made to the Istio API 

which in turn makes requests to the Kubernetes API. In the second, requests were made to the OPA's API, and 

for that, TCP requests were used, containing the policies meant to be applied. 

The flow of events of the processing pipeline since the traffic is captured was as follows: 

 Capture of the network traffic. 

 Process of the dataset with the extracted features. 

 Classification of the captured traffic using the ML model. 

 Enforcement of the security policies. 

Security policy enforcement with Istio experiment 

In a first experiment, Istio supports the application of security policies. The pods running UC4 microservices also 

run a sidecar proxy. The policies were applied as follows: 

1. Departing from the classified flows in the collected traffic, a policy is created to block the incoming 

communications from the IP address of the source classified as a threat. 

2. To that aim, a YAML file is created to enforce the policy to deny the communications coming from 

the identified malignant IP address. 

3. Use of the kubernetes command “kubectl” to “apply” this YAML file with the policy. 

4. Once the policy has been applied, the Envoy proxy's is now aware of them, and they are the ones 

who will allow/deny communication between the services. 

Security policy enforcement with OPA experiment 

The second experiment is also supported by Istio and the respective envoy proxies, but it included OPA as a 

component. OPA was used as a decision mechanism for the acceptance or denial of the incoming and outgoing 

communications. Thus, in this case, the decision component was independent of the component responsible for 

the application of the policies. 

This experiment explored the application of policies departing from the previous solution, to apply a policy over 

the OPA API. OPA is an external authorization service, so the following steps are needed: 

1. A security policy was created to deny connections from the malignant IP address. This consisted in cre-

ating a “rego” file containing the policy to deny communications from such IP address. 
2. A request is made to the OPA API with the “rego” file in the message body. 
3. From this moment on, each time a service receives a request, its envoy proxy “asks” the OPA for author-

ization. 

4. The OPA answers inform the proxy about the decision to accept or block the request. 

Attack to EMQX experiment 

This scenario addresses an attack on the EMQX1 service. The EMQX service is an MQTT broker, that is responsible 

for enabling the communications between the different UC4 components and between the User Equipment 

(UEs).  

Both EMQX and attacker containers were deployed. After the attack has started it was possible to observe the 

traffic under the Grafana component. Finally, a specifically tailored policy to deny the communication from the 

source IP was applied. Finally, and at the end, it was possible to observe the traffic being stopped.  

The objectives of this attack scenarios were the following: 

                                                           
1 https://www.emqx.io/  

https://www.emqx.io/
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 Simulation of an attack on the MQTT broker (EMQX). 

 Application of the policies to stop the attack by exploring Istio and OPA. 

 Collecting traffic metrics through Prometheus. 

 Provide observability over the traffic with Grafana (metrics collected by Prometheus). 

This experience was focused on the attack of the EMQX and it was conducted as follows: 

Step 1. The EMQX was deployed as HEML (package manager). 

Step 2. Build the needed different Docker images. 

Step 3. Deploy the Attacker. 

Step 4. Execute the "TCP Dump" container capturing the requests to the EMQX component into a file. Later, this 

file was extracted and analysed with Wireshark and afterwards exported to a ".csv" file to be processed as a 

training dataset by a ML model, aiming to produce an algorithm capable to identify malicious connections.  

Step 5. Run the attacker with 500 connections, implemented with a Python application to produce the DoS to 

the EMQX pod. 

Step 6. Apply security policies to block the attack. 

Step 7. Observe the traffic being generated before, during and after the attack be blocked as a result of the 

policies enforcement (Figure 23). 

 

Figure 23: Traffic in Grafana 
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Annex IV: HSPF Evolution 

This Annex aims to provide additional information what is already presented in Section 3.1. 

Reference Architecture 

Figure 1 depicts the initial reference architecture of the proposed Security and Privacy Framework, where three 

key elements reside: a security engine, a policy engine, and an AI engine.  

The security engine encapsulates all the security protocols, software, and storage implementations for the dif-

ferent layers of architecture, including mechanisms for protecting the physical hardware and communications, 

and vulnerability scanning for breach mitigation and response. The security engine also considers the protection 

to the underlying host OS running the containers and the shared infrastructure. The following concepts will be 

further researched: access control via single sign-on, authentication and network traffic encryption, container 

isolation techniques and malicious intent detection. 

The policy engine monitors the connections between sources and resources and makes the ultimate decision to 

grant, deny, or revoke access to the resource. This component can include a process to apply policy administra-

tion decisions. It also centralizes the configuration of the policies enforced at the network and container levels. 

For instance, applying policy profiles at the container level, can target multi-tenant environments, manage the 

resource access, or enforce process kernel restrictions, enhancing its isolation. This component is also responsi-

ble for session-specific authentication processes, including the generation of tokens or credentials to be used by 

a client to have access to a resource. In case the session is authorized, and the request authenticated, it allows 

the session to start. Otherwise, the session is denied, and the connection is blocked. In some implementations, 

the decision and the policy manager can be divided into two logical components. These components communi-

cate via the control plane.  

An AI engine assists in taking decisions, in order to enforce adequate security policies. For instance, it might help 

to identify anomalous flows based on the observability of the network traffic and support the enforcement of 

automated response policies and actions. Operators face a rise of unknown threats that compromise their sys-

tems. Threats like DoS attacks and Advanced Persistent Threats (APTs) exploiting different protocols have shown 

that perimeter walls and relying solely upon rule-based firewalls supported by a single protocol analysis are not 

enough anymore. Hence, rule-based firewalls should also consider artificial intelligence for enabling an immedi-

ate response to yet unknown security threats, which are undetectable by firewall vendors. By applying layered 

protection that includes static and heuristic analysis, anomaly detection powered by ML, and sandboxing, it is 

possible to provide a comprehensive defence with real-time, multi-layered threat detection. 

Finally, in addition to the proposed framework, the 5G-EPICENTRE project will foster the use of SBD philosophy, 

which aims to incorporate security and privacy concepts from the early stages of the design and development 

lifecycle. Concepts and approaches such as UMLsec, SecureUML and SecDevOps will be considered during the 

design of the overall 5G-EPICENTRE architecture components. Further information over these and other con-

cepts, as well as used technologies are presented into Annex I: Cloud-native security. 

HSPF Implementation Architecture  

The first stable version of the HSPF implementation (depicted in Figure 2) has two major components: the set of 

collection agents and the AICO, which is composed by four components: Data Collection, Analytics, Intelligence 

and the Control & Orchestration.   

The Data Collection is the mechanism used to collect communications traffic from the several collection agents. 

The Analytics block is responsible for extracting the set of relative features and applying pre-processing tech-

niques to the collected data. The processed data is then consumed by the Intelligence block, which is empowered 
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by AI algorithms to detect anomalous flows and identify them as potential threats to the system. Such classifica-

tion is handed over to the Control & Orchestration mechanism, which then applies the appropriate security pol-

icies, namely, to mitigate threats upon their detection. 

The deployment of this framework assumes a Kubernetes environment with Istio as a Service Mesh. The usage 

of Kubernetes contributes to an easier integration of this framework, as it allows for the injection of collection 

agents at run-time. Additionally, the use of Kubernetes has been defined by 5G-EPICENTRE as the main technol-

ogy to be used in the testbeds, which greatly aligns with this assumption. 

This architecture also foresees the existence of two different types of attackers: outsider and insider. The first 

aims to represent attacks that are originated outside of the platform (e.g., dictionary attacks over some authen-

tication service). The second aims to represent situations where an attacker would somehow have gained access 

to a component within a cluster (e.g., a service running in a container) and started to cause the disruption of the 

normal behaviour of the application (e.g., causing the overload of a service with malicious traffic). 
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Annex V: Latest HSPF implementation architecture 

In this Annex, complementary information related with the latest HSPF implementation architecture will be pre-

sented. 

Report Interface 

This Section aims to provide additional information on the HSPF Report Interface. Thought to provide real-time 

information over the underlying system, this interface currently supports integration with a MQTT broker, but 

additional methods are envisioned to be added. The initial support to communications via MQTT was designed 

with the aim of allowing the integration with the project’s Publisher component. 

Figure 24 depicts the existent message schema (on the left) and an example (on the right). 

                          

Figure 24: HSPF Report Interface – Message Schema and Example 

The schema of this message is aligned with the schemas defined by the Consortium for the different interactions 

with the Publisher component, which have been initially defined in D4.1 and later on refined in D4.4. The data 

field attributes are described hereafter: 

 source_ip: Corresponds to the source IP of the detected attack. 

 destination_ip: Corresponds to the IP of the service targeted. 

 destination_port: Corresponds to the list of ports targeted by the attack. 

 classifier_ip: Corresponds to the classifier IP that classified the flow(s) as malicious. 
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 model_ip: Corresponds to the unique model identifier that performed the traffic classification. 

 flow_filename: Corresponds to the filename containing the flow characterized as malicious. 

 flow_ids: Corresponds to the list of flows IDs classified as malicious. 

 anomalies_detected: Corresponds to the internal threshold that sets the number of anomalies apart 

from which the origin component is classified as an attacker and a message of detected attack is gener-

ated. 

 description: Provides a description over the detected attack. 

 additional_info: Provides additional information to the description. 

 first_occurrence: Corresponds to the timestamp of the first anomaly detected that led to the issue of 

this message. 

 last_occurrence: Corresponds to the timestamp of the last anomaly detected before the source IP be 

characterized as an attacker and this message be triggered. 

 anomaly_threshold: Corresponds to the threshold used to characterize the flow(s) as malicious or not 

malicious, upon the flow reconstruction by the ML model. 

 reconstruction_error: Corresponds to the reconstruction error obtained by the last flow before the 

source IP being characterized as an attacker and this message be triggered. 

 comparison_metric: Corresponds to the comparison metric used to calculate the reconstruction error. 

 tf_version: Corresponds to the TensorFlow [D1] version being used in the current deployment. 

 nfstream_version: Corresponds to the NFStream [D2] version being used in the current deployment. 

Validation Activities 

Table 14 presents the full list of results attained during the validation activities with the AI model currently in 

use. 

Table 14: Validation Activities - Results 

Number 

of layers 

Hidden layers activation 

function 

 Optimizer Bottleneck Layer 

dimension 

Learning  

rate 

Validation  

Loss 

11 elu Nadam 7 0.0001 0.0182 

11 leakyrelu Adam 7 0.0001 0.0184 

11 elu Adam 7 0.0001 0.0187 

9 leakyrelu Nadam 7 0.0001 0.0196 

9 elu Nadam 7 0.0001 0.0201 

9 elu Adam 7 0.0001 0.0207 

11 elu Adam 5 0.0001 0.021 

11 leakyrelu Nadam 7 0.0001 0.0217 

11 leakyrelu Adam 5 0.0001 0.0249 

11 leakyrelu Nadam 5 0.0001 0.0257 

9 relu Adam 7 0.0001 0.0274 

9 elu Nadam 5 0.0001 0.0276 

11 elu Nadam 5 0.0001 0.0277 
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9 leakyrelu Adam 7 0.0001 0.02814 

9 leakyrelu Nadam 5 0.0001 0.0282 

9 relu Nadam 7 0.0001 0.0296 

11 relu Nadam 7 0.0001 0.0311 

9 leakyrelu Adam 5 0.0001 0.0319 

11 elu Adam 7 1e-05 0.0331 

9 elu Adam 5 0.0001 0.0341 

9 leakyrelu Nadam 7 0.001 0.0342 

11 elu Nadam 5 1e-05 0.0349 

9 relu Adam 7 0.001 0.0361 

11 elu Adam 7 0.001 0.0364 

11 elu Nadam 7 1e-05 0.0366 

9 relu Adam 5 0.0001 0.0375 

9 relu Nadam 5 0.0001 0.0382 

7 elu Nadam 7 0.0001 0.0389 

11 relu Adam 5 0.0001 0.0392 

9 elu Adam 5 0.001 0.0394 

9 elu Nadam 7 0.001 0.0397 

7 leakyrelu Nadam 7 0.0001 0.0403 

9 elu Adam 7 0.001 0.0404 

9 elu Nadam 5 0.001 0.0406 

11 elu Nadam 7 0.001 0.0411 

11 elu Adam 5 1e-05 0.0416 

11 elu Nadam 5 0.001 0.0419 

7 elu Adam 7 0.001 0.0420 

9 leakyrelu Adam 7 0.001 0.04219 

11 elu Adam 3 0.0001 0.0422 

7 relu Adam 7 0.0001 0.0423 

7 leakyrelu Adam 7 0.0001 0.0423 

7 elu Adam 7 0.0001 0.0426 

9 elu Nadam 7 1e-05 0.0430 

9 elu Adam 7 1e-05 0.0436 

7 elu Nadam 5 0.0001 0.0438 
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7 relu Nadam 7 0.001 0.0442 

7 elu Adam 5 0.0001 0.0450 

11 relu Adam 3 0.0001 0.0453 

11 relu Nadam 5 0.0001 0.0456 

11 elu Nadam 3 0.0001 0.0457 

9 elu Nadam 5 1e-05 0.0462 

11 leakyrelu Nadam 3 0.0001 0.0465 

11 leakyrelu Adam 3 0.0001 0.0486 

7 relu Adam 5 0.0001 0.0488 

11 relu Adam 7 0.0001 0.049 

11 leakyrelu Adam 7 0.001 0.0491 

11 relu Adam 7 1e-05 0.0494 

7 leakyrelu Nadam 5 0.0001 0.0501 

11 elu Adam 5 0.001 0.0502 

9 elu Adam 3 0.0001 0.0505 

9 elu Nadam 3 0.0001 0.0511 

7 relu Nadam 7 0.0001 0.0517 

9 relu Adam 3 0.0001 0.0518 

11 leakyrelu Adam 7 1e-05 0.0523 

7 leakyrelu Adam 5 0.0001 0.0536 

11 leakyrelu Nadam 7 1e-05 0.0551 

11 relu Nadam 3 0.0001 0.0556 

7 elu Adam 5 1e-05 0.0572 

7 elu Adam 7 1e-05 0.0578 

7 elu Nadam 7 1e-05 0.0593 

7 relu Nadam 5 0.0001 0.0598 

9 leakyrelu Nadam 7 1e-05 0.0603 

11 relu Adam 5 1e-05 0.0606 

11 relu Nadam 5 1e-05 0.0615 

9 relu Adam 5 0.001 0.0619 

9 leakyrelu Nadam 3 0.0001 0.0647 

11 leakyrelu Nadam 5 1e-05 0.0655 

9 leakyrelu Nadam 5 1e-05 0.0657 
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11 elu Adam 3 1e-05 0.0664 

11 relu Nadam 7 1e-05 0.0665 

7 relu Nadam 7 1e-05 0.0669 

7 relu Adam 7 0.001 0.0671 

7 elu Nadam 7 0.001 0.0673 

11 leakyrelu Adam 5 1e-05 0.0683 

7 leakyrelu Nadam 7 0.001 0.0695 

7 leakyrelu Nadam 5 1e-05 0.0697 

9 elu Adam 3 0.001 0.0698 

7 leakyrelu Adam 7 1e-05 0.0702 

7 elu Nadam 3 0.0001 0.0706 

7 relu Adam 7 1e-05 0.0721 

9 relu Nadam 7 1e-05 0.0724 

7 elu Nadam 5 0.001 0.0725 

7 leakyrelu Adam 7 0.001 0.0726 

9 relu Adam 7 1e-05 0.0728 

9 leakyrelu Adam 3 0.0001 0.0730 

7 leakyrelu Adam 3 0.0001 0.0737 

11 relu Nadam 7 0.001 0.0739 

11 relu Adam 7 0.001 0.0741 

7 leakyrelu Nadam 3 0.0001 0.0743 

7 elu Adam 5 0.001 0.0744 

9 leakyrelu Adam 7 1e-05 0.0747 

7 elu Nadam 5 1e-05 0.0755 

9 leakyrelu Adam 5 0.001 0.0759 

9 leakyrelu Nadam 5 0.001 0.0760 

11 elu Nadam 3 1e-05 0.0762 

7 leakyrelu Nadam 5 0.001 0.0778 

9 relu Nadam 7 0.001 0.0782 

11 elu Adam 3 0.001 0.0792 

9 relu Nadam 5 1e-05 0.0805 

11 leakyrelu Adam 5 0.001 0.0805 

11 leakyrelu Nadam 3 1e-05 0.0808 
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11 relu Nadam 5 0.001 0.0822 

7 leakyrelu Adam 5 0.001 0.0823 

11 leakyrelu Nadam 5 0.001 0.0825 

7 relu Adam 5 0.001 0.0826 

11 elu Nadam 3 0.001 0.0830 

11 leakyrelu Nadam 7 0.001 0.0830 

7 relu Nadam 5 0.001 0.0832 

11 relu Nadam 3 1e-05 0.0845 

9 elu Adam 5 1e-05 0.0861 

7 leakyrelu Adam 3 1e-05 0.0874 

9 leakyrelu Adam 5 1e-05 0.0876 

9 relu Nadam 5 0.001 0.0877 

11 leakyrelu Adam 3 1e-05 0.0885 

11 relu Adam 5 0.001 0.0888 

7 leakyrelu Adam 5 1e-05 0.0889 

9 leakyrelu Nadam 3 1e-05 0.0889 

11 relu Adam 3 0.001 0.0895 

7 relu Nadam 5 1e-05 0.0902 

9 relu Nadam 3 0.0001 0.0910 

7 relu Adam 5 1e-05 0.0912 

9 leakyrelu Adam 3 0.001 0.0913 

9 leakyrelu Nadam 3 0.001 0.0913 

9 relu Adam 3 0.001 0.0919 

11 leakyrelu Nadam 3 0.001 0.0938 

11 leakyrelu Adam 3 0.001 0.0947 

9 elu Nadam 3 1e-05 0.0954 

7 elu Adam 3 0.0001 0.0963 

9 relu Nadam 3 0.001 0.0977 

7 leakyrelu Adam 3 0.001 0.0983 

7 elu Nadam 3 0.001 0.0991 

7 leakyrelu Nadam 3 0.001 0.0994 

7 leakyrelu Nadam 7 1e-05 0.0995 

7 relu Adam 3 0.001 0.1018 
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7 elu Nadam 3 1e-05 0.1021 

7 relu Nadam 3 0.001 0.1064 

9 relu Adam 5 1e-05 0.1086 

7 leakyrelu Nadam 3 1e-05 0.1120 

9 leakyrelu Adam 3 1e-05 0.1125 

7 relu Nadam 3 1e-05 0.1129 

9 relu Nadam 3 1e-05 0.1156 

9 elu Adam 3 1e-05 0.1167 

9 elu Nadam 3 0.001 0.1180 

7 elu Adam 3 1e-05 0.1208 

7 relu Adam 3 1e-05 0.124 

9 relu Adam 3 1e-05 0.1293 

7 elu Adam 3 0.001 0.1322 

7 relu Adam 3 0.0001 0.1568 

11 relu Adam 3 1e-05 0.1677 

7 relu Nadam 3 0.0001 0.8150 

11 relu Nadam 3 0.001 0.992 

First HSPF deployment into a 5G-EPICENTRE testbed 

Recently, the first HSPF deployment has been successfully achieved at UMA testbed. 

Figure 25 presents an example of the logging information registered by a Classifier, injected next to a micro-

service. Data in the image corresponds to a series of flows, which are recorded in the same format that is later 

used by the Agent for inference purposes. 

Figure 26 depicts an example of the logging information registered by an Agent injected next to a micro-service. 

Data in the image presents the results of the MSE inferred from the newest flows made available by the Collector, 

as well as their respective classification into malicious and not malicious data. It is also possible to notice that 

the Agent correctly establishes the connection to the Aggregator. 

Figure 27 includes an example of the logging information registered by an Aggregator. From the data in the 

Figure, it is possible to notice that the Aggregator is aware of the two components that are currently being mon-

itored, as well to see that it can receive the layers’ weights from one of the clients (e.g., one of the Agents). 

Figure 28 shows an example of the logging information registered by an Aggregator in a later stage, where the 

periodic training routine has started, with the Aggregator performing a series of training batches that take into 

consideration the layers’ weights shared by each Agent. 
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Figure 25: HSPF Collector - Logging Example 

 

Figure 26: HSPF Agent - Logging Example 
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Figure 27: HSPF Aggregator - Logging Example 
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Figure 28: Aggregator Collector - Logging Example 2 
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