

This project has received funding from the European Union's Horizon 2020 In-
novation Action programme under Grant Agreement No 101016521.

www.5gepicentre.eu

5G ExPerimentation Infrastructure hosting Cloud-nativE
Netapps for public proTection and disaster RElief

Innovation Action – ICT-41-2020 - 5G PPP – 5G

Innovations for verticals with third party services

D2.3: Cloud-native services containerization

Delivery date: April 2023

Dissemination level: Public

Project Title: 5G-EPICENTRE - 5G ExPerimentation Infrastructure hosting Cloud-nativE Netapps for pub-

lic proTection and disaster RElief

Duration: 1 January 2021 – 31 December 2023

Project URL https://www.5gepicentre.eu/

https://www.5gepicentre.eu/

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 2

Document Information

Deliverable D2.3: Cloud-native services containerization

Work Package WP2: Cloud-native 5G NFV

Task(s) T2.2: Cloud-native services containerization

Type Other

Dissemination Level Public

Due Date M28, April 30, 2023

Submission Date M28, April 30, 2023

Document Lead Almudena Díaz Zayas (UMA)

Contributors Jorge Márquez Ortega (UMA)

Daniel del Teso (NEM)

Daniele Ronzani (ATH)

Alain Dubois (ADS)

André Gomes (ONE)

Pedro Tomás (ONE)

Vitor Fonseca (ONE)

Antonio Zanesco (YBQ)

Antonis Protopsaltis (ORAMA)

Hamzeh Khalili (CTTC)

Rainer Wragge (OPTO)

Ankur Gupta (HHI)

Kirsten Krüger (HHI)

Holger Gäbler (HHI)

Internal Review Nicola di Prieto (ATH)

Daniel del Teso (NEM)

Disclaimer: This document reflects only the author's view and the European Commission is not responsible for

any use that may be made of the information it contains. This material is the copyright of 5G-EPICENTRE consor-

tium parties, and may not be reproduced or copied without permission. The commercial use of any information

contained in this document may require a license from the proprietor of that information.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 3

Document history

Version Date Changes Contributor(s)

V0.1 12/01/2023 Initial deliverable structure Almudena Díaz Zayas (UMA)

V0.2 27/02/2023 50% of the deliverable content

Almudena Díaz Zayas (UMA)

Daniel del Teso (NEM)

Pablo Garrido (NEM)

Daniele Ronzani (ATH)

Alain Dubois (ADS)

V0.3 16/03/2023 90% of the deliverable content

Almudena Díaz Zayas (UMA)

André Gomes (ONE)

Pedro Tomás (ONE)

Vitor Fonseca (ONE)

Antonio Zanesco (YBQ)

Antonis Protopsaltis (ORAMA)

Hamzeh Khalili (CTTC)

Rainer Wragge (OPTO)

Ankur Gupta (HHI)

V1.0 13/04/2023 Internal Review Version

Almudena Díaz (UMA)

Daniel de Teso (NEM)

Pablo Garrido (NEM)

Daniele Ronzani (ATH)

Alain Dubois (ADS)

André Gomes (ONE)

Pedro Tomás (ONE)

Vitor Fonseca (ONE)

Antonio Zanesco (YBQ)

Antonis Protopsaltis (ORAMA)

Hamzeh Khalili (CTTC)

Rainer Wragge (OPTO)

Ankur Gupta (HHI)

V1.1 17/04/2023 1st version with suggested revisions
Nicola Di Prieto (ATH)

Daniel de Teso (NEM)

V1.2 25/04/2023 First revisions after internal review Almudena Díaz Zayas (UMA)

V1.5 26/04/2023
Quality review: copyediting; proofreading;
formatting

Konstantinos C. Apostolakis
(FORTH)

V2.0 27/04/2023 Final version for submission Almudena Díaz Zayas (UMA)

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 4

Project Partners

Logo Partner Country Short name

AIRBUS DS SLC France ADS

NOVA TELECOMMUNICATIONS SINGLE MEMBER
S.A.

Greece NOVA

Altice Labs SA Portugal ALB

Fraunhofer-Gesellschaft zur Förderung der an-
gewandten Forschung e.V.

Germany HHI

Foundation for Research and Technology Hellas Greece FORTH

Universidad de Malaga Spain UMA

Centre Tecnològic de Telecomunicacions de Cata-
lunya

Spain CTTC

Istella SpA Italy IST

One Source Consultoria Informatica LDA Portugal ONE

Iquadrat Informatica SL Spain IQU

Nemergent Solutions S.L. Spain NEM

 EBOS Technologies Limited Cyprus EBOS

Athonet SRL Italy ATH

RedZinc Services Limited Ireland RZ

OptoPrecision GmbH Germany OPTO

Youbiquo SRL Italy YBQ

ORamaVR SA Switzerland ORAMA

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 5

List of abbreviations

Abbreviation Definition

5GC 5G Core

AMF Access and Mobility Management Function

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

AR Augmented Reality

AUSF Authentication Server Function

(C/P)AS (Controlling/Participating) Application Server

ASF Audio Signalisation Function

BK BodyKit

BSF Binding Support Function

CCC Command and Control Centre

CDN Content Delivery Network

CMS Configuration Management Server

CNI Container Network Interface

(I/P/S)CSCF (Interrogating/Proxy/Serving) Call Session Control Function

CSI Container Storage Interface

DB Database

DBMS Database Management System

DMF Data Management Function

DN Data Network

DNS Domain Name System

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 6

ExaaS Experiments as a Service

FQDN Fully Qualified Domain Name

(F)HD (Full) High Definition

HSS Home Subscriber Server

GA Grant Agreement

GMS Group Management Server

IdMF Identity Management Function

IMS IP Multimedia Subsystem

IoT Internet of Things

IP Internet Protocol

K8s Kubernetes

KMS Key Management Server

KVM Kernel-based Virtual Machine

KPI Key Performance Indicator

KPIF Key Performance Indicator Function

MANO Management and Orchestration

MCPTT Mission Critical Push-to-Talk

MCX Mission Critical

MetalLB Bare metal load-balancer for K8s

MQTT Message Queueing (Telemetry Transport)

N/A Not Applicable

(C/V)NF(C/M) (Cloud-native/Virtual) Network Function (Component/Manager)

(C)NFV(I/O) (Cloud-native) Network Functions Virtualization (Infrastructure/Orchestrator)

NFV Network Functions Virtualization

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 7

NRF Network Repository Function

NS Network Service

NSSF Network Slice Selection Function

OCI Open Container Initiative

PDU Protocol Data Unit

PCF Policy Control Function

PTAggregate Process for Data Aggregation

PTLive Process for Live Data

PTS Process To Save

PVC Persistent Volume Claims

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

SA Standalone

SBA Service-Based Architecture

SCP Service Communication Proxy

SD Standard Definition

SDK Software Development Kit

SDS Software-Defined Storage

(U)SIM (Universal) Subscriber Identity Module

SIP Session Initiation Protocol

SMF Session Management Function

SSL Secure Sockets Layer

TCP Transmission Control Protocol

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 8

TLS Transport Layer Security

UC Use Case

UDP User Datagram Protocol

UDR Unified Data Repository

UE User Equipment

(G)UI (Graphical) User Interface

UDM Unified Data Management

UL Uplink

UPF User Plane Function

(K)VM (Kernel-based) Virtual Machine

VMF Video Media Function

VPN Virtual Private Network

VSF Video Signalisation Function

WAN Wide Area Network

WFS Webfront Server

WP Work Package

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 9

Executive summary

New broadband technologies require the constant evolution of the services that operate on them, to adapt and
take advantage of each new technological leaps’ benefits to their solutions. 5G technology is no exception. It is
specifically conceptualized to work with virtualized solutions, enabling dynamic deployment models. These mod-
els are driving the proliferation of verticals, that must also embrace virtualization and dynamic deployment if
they want to take advantage of all the benefits 5G has to offer. For this reason, 5G-EPICENTRE has opted for
Cloud-Native solutions and the containerization of its services, to offer its users all the advantages that 5G tech-
nology can enable (while maintaining compatibility with other legacy solutions). Moreover, the containerization
of services is optimal for providing robust and highly available Public Protection and Disaster Relief services.

Deliverable D2.3 is a self-contained document that collects the instructions and lessons learned during the de-
ployment of the different use cases of the project in Kubernetes (K8s). The focus of this deliverable is to provide
a clear understanding of the deployment of vertical solutions in containers on K8s.

This document includes an introduction to K8s, the requirements of the different use cases to be containerized,
the K8s architecture of each one, and the instructions for their deployment. The document also provides a com-
pilation of common issues and the lessons learned.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 10

Table of Contents

List of Figures ... 12
List of Tables .. 13
1 Introduction ... 14

1.1 Mapping of project’s outputs ... 14
1.2 Kubernetes concepts .. 15
1.3 Kubernetes in 5G-EPICENTRE ... 15

2 Use Cases containerization requirements. .. 17
2.1 UC1 - Multimedia Mission Critical Communication and Collaboration Platform 17
2.2 UC2: Multi-agency and multi-deployment mission critical communications and dynamic service
scaling 17
2.3 UC3: Ultra-reliable drone navigation and remote control ... 17
2.4 UC4: IoT for improving first responders’ situational awareness and safety .. 18
2.5 UC5: BlueEye Remote Video .. 18
2.6 UC6: Fast situational awareness and near real-time disaster mapping ... 18
2.7 UC7: AR and AI wearable electronics for PPDR .. 19
2.8 UC8: AR-assisted emergency surgical care ... 19

3 Kubernetes architecture .. 20
3.1 UC1: Multimedia Mission Critical Communication and Collaboration Platform.................................... 20
3.2 UC2: Multi-agency and multi-deployment mission critical communications and dynamic service
scaling 20
3.3 UC3: Ultra-reliable drone navigation and remote control ... 21
3.4 UC4: IoT for improving first responders’ situational awareness and safety .. 21
3.5 UC5: BlueEye Remote Video .. 23
3.6 UC6: Fast situational awareness and near real-time disaster mapping ... 23
3.7 UC7: AR and AI wearable electronics for PPDR .. 24
3.8 UC8: AR-assisted emergency surgical care ... 25

4 Instructions for the deployment ... 26
4.1 UC1: Multimedia Mission Critical Communication and Collaboration Platform.................................... 26
4.2 UC2: Multi-agency and multi-deployment mission critical communication and dynamic service scaling
 26

4.2.1 Deployment cluster with microK8s ... 26
4.2.2 Helm installation.. 27

4.3 UC3: Ultra-reliable drone navigation and remote control ... 27
4.4 UC4: IoT for improving first responders’ situational awareness and safety .. 28

4.4.1 Pull images from the container registry .. 28
4.4.2 Generate a tls secret for the Ingress Controller .. 28
4.4.3 Map an external domain to CoreDNS .. 28
4.4.4 Grant permissions.. 29
4.4.5 Deployment ... 29

4.5 UC5: BlueEye Remote Video .. 30
4.6 UC6: Fast situational awareness and near real-time disaster mapping ... 30
4.7 UC7: AR and AI wearable electronics for PPDR .. 30
4.8 UC8: AR-assisted emergency surgical care .. 31

4.8.1 Requirements .. 31
4.8.2 Virtual machine configuration ... 31
4.8.3 Virtual machine deployment ... 31

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 11

5 Virtualized core networks ... 33
5.1 Athonet 5GC ... 33
5.2 Open5GS ... 34

6 Deployment issues .. 35
6.1 Networking issues .. 35
6.2 Storages issues ... 35
6.3 Security issues .. 35
6.4 Other issues .. 35

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 12

List of Figures

Figure 1. Deployment of Kubenetes in the context of the 5G-EPICENTRE project. .. 16

Figure 2: Kubernetes MCX architecture .. 21

Figure 3: UC4 Components .. 22

Figure 4: BlueEye Remote Video use case ... 23

Figure 5: Biquo architecture .. 24

Figure 6: ATH 5G core network and its interfacing. .. 33

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 13

List of Tables

Table 1: Adherence to 5G-EPICENTRE’s GA Deliverable & Tasks Descriptions ... 14

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 14

1 Introduction

5G not only provides improved network capabilities (higher data rates; lower latencies; high efficiency in the use
of resources; lower energy consumption; greater security), but also represents a paradigm shift in order to adapt
to the new requirements of the numerous use cases that were taken into account during the design of 5G tech-
nology. Specifically, 5G networks are supported by software components and virtualization solutions. This new
approach turns 5G networks into agile networks, which can be programmatically assembled and configured for
specific use cases. Moreover, the same network infrastructure can host multiple virtual networks with different
performance and characteristics, aimed at different types of users. These networks are easily reconfigurable,
without the need for modifications or additional investments of the physical components that make up the in-
frastructure. Such vision has given rise to the adoption and usage of Virtual Network Functions (VNFs), and their
decomposition into micro-services.

In order to propitiate this paradigm change, the 5G-EPICENTRE project has adopted the use of container-based
virtualization technologies, with Kubernetes (K8s) being the chosen option as Virtual Infrastructure (VI) and VNF
Manager (see also D1.3 and D1.4). Container-based virtualization technologies have demonstrated their benefits
over the use of Virtual Machines (VMs), as they are more lightweight in terms on consumed resources and can
unlock superior performance. Moreover, relating to the specific vertical addressed in this project – Public Pro-
tection and Disaster Relief (PPDR) – requirements are demanded that can be also satisfied with the usage of K8s.

PPDR requires robust and secure service deployments. In this context, enabling robust and highly available ser-
vices is a primary goal for the project. A valid approach to offer robust services is by splitting the different func-
tionalities into micro-services, which both ease the management of the whole system, and offer redundancy and
highly available services. Containers are used to run these micro-services.

However, the management and coordination of micro-services and their containerization is not a trivial task. K8s
is an open-source platform for managing containerized workloads and services, which facilitates the manage-
ment of a large and dynamic ecosystems. K8s also provides a framework to run distributed systems resiliently,
taking care of the scaling and failover processes. Moreover, it is widely available, being supported by the most
common Linux distributions (RHEL, Ubuntu, etc.) and major public clouds. This deliverable describes the process
to reach a successful deployment of all the project Use Cases’ (UCs) services in such a virtualized environment.

The deliverable introduces the concept of K8s, the requirements of each one of the uses cases regarding their
containerization and architecture adopted for the deployment of the uses cases and the instructions for the
deployment. Finally, as conclusions, the main issues and learned lessons are provided.

1.1 Mapping of project’s outputs

The purpose of this section is to map 5G-EPICENTRE Grant Agreement (GA) commitments within the formal Task
description, against the project’s respective outputs and work performed.

Table 1: Adherence to 5G-EPICENTRE’s GA Deliverable & Tasks Descriptions

5G-EPICENTRE Task Respective Document Chapters Justification

T2.2: Cloud-native services con-
tainerization

“This task will focus on the integra-
tion of edge computing in the
5GEPICENTRE

Section 2 – Use Cases containeriza-
tion requirements.

Sections 2, 3, 4, and 5 provide the
requirements of the UCs to be con-
tainerized, the K8s architecture
adopted by each one, the deploy-
ment instructions in each case, and

Section 3 – Kubernetes architec-
ture

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 15

architecture. This will be achieved
by encapsulating VNFs and NetApps
in lightweight edge containers
to achieve faster instantiation
times, reduced latency, low re-
source utilization and better re-
sponse times, especially considering
the time-criticality of PPDR commu-
nications and applications. “

Section 4 – Instructions for the de-
ployment

the lessons learned. Their content
is valuable for supporting third-
party PPDR verticals in the migra-
tion towards cloud-native deploy-
ments. This migration will enable
the PPDR community to take ad-
vantage of the benefits provided
by the usage cloud-native contain-
erized solutions.

Section 5 – Virtualized core net-
works

1.2 Kubernetes concepts

K8s is a widely adopted solution for the orchestration of containers. K8s defines a cluster that consists of a set
of worker machines called nodes, and a control plane. The nodes hosts Pods, which run containerized applica-
tions. At least one node must be defined. The control plane manages the nodes and Pods. Each Pod is a group of
one or more containers, and are the smallest deployable computing unit that can be created and managed in
K8s. Usually, each Pod corresponds to one containerized micro-service.

Each Pod get its own Internet Protocol (IP) address, and they are not permanent resources; Pods can be instan-
tiated dynamically, according to different policies; replicate micro-services; re-instantiate micro-services that are
down; and so forth. Since some Pods provide functionalities to other Pods, this yields the problem of keeping
track of which IP address needs to be reached at any moment. K8s thus defines services.

A K8s service is an abstraction layer that exposes the application running on a set of Pods, defining a policy to
access them. Different types of K8s services are defined:

• ClusterIP: A load balancer only reachable from within the cluster. Exposes the service on a cluster-inter-
nal IP.

• LoadBalancer: A load balancer that exposes the service externally, using a cloud provider's load balancer.

• NodePort: Exposes the service on each Node's IP at a static port. A NodePort service can be reached
from outside the cluster, by requesting NodeIP:NodePort.

A different available option is by declaring a Headless service. In this case a Load Balancer is not declared, and it
is only accessible within the cluster. A Domain Name System (DNS) request to this service will return all Pods’ IPs
from that service.

Although K8s has its own definition for the concept "services", for the sake of consistency, this deliverable will
continue to use the term to refer to the different functionalities that can be deployed, such as vertical services.
To refer to K8s "services", they will be referred to directly (e.g., loadBalancer, NodePort, etc.).

1.3 Kubernetes in 5G-EPICENTRE

The general architecture for adopting the use of K8s in the 5G-EPICENTRE project was described in D1.3. Within
5G-EPICENTRE, the goal is to smoothly evolve the existing Network Functions Virtualization Management and
Orchestration (NFV-MANO) architectures in each testbed into a K8s-based orchestration system for automating
VI and the deployment of Cloud-native Network Functions (CNF). The solution adopted by the project to fulfil
this target is based on the usage of the KuberVirt VM management add-on. Kubervirt allows the usage of con-
tainers and VMs on the same cluster, or even the same node, using the same networks and same storage infra-
structure. In addition to KubeVirt, an instance of libvirtd is used to manage the lifecycle of the VM process. Within
this approach, it is possible to have pure K8s nodes to place containers into Pods, or K8s VMs Nodes, and to
deploy K8s pods and K8s VMs pods, as shown in Figure 1.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 16

Figure 1. Deployment of Kubernetes in the context of the 5G-EPICENTRE project.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 17

2 Use Cases containerization requirements.

This Section identifies the containerization requirements of the UCs covered in the project, in order to identify
the hardware resources that should be provided by the platforms and also, the software add-ons needed for the
deployment and management of the containerized services.

2.1 UC1 - Multimedia Mission Critical Communication and Collaboration Platform

The Mission Critical (MCX) services system from Airbus (ADS) can be deployed on any container runtime engine,
leveraging modern orchestration frameworks like K8s. The application is lightweight. Below are the recommen-
dations relative to the system:

• 1vCPU and 1GB RAM.

• Bandwidth Receive (Rx): Around 500kpbs per video stream and per user, for Standard Definition (SD)
stream at 15 frames-per-second (fps) / Around 5Mpbs per video stream and per user for Full High Defi-
nition (FHD) stream at 30fps.

• Bandwidth Transmit (Tx): Around 500kpbs per video stream for SD stream 15fps / Around 5Mpbs per
video stream for FHD stream 30fps.

The application does not include a cartography server, and needs to be connected to the Internet to load maps
background (nonetheless, a cache can be exploited).

ADS media micro-services can work with mixed protocols (Transmission Control Protocol [TCP] and User Data-
gram Protocol [UDP]), potentially increasing performances and Quality of Experience (QoE, not mandatory). In
order to exploit this on K8s infrastructure, the feature gate MixedProtocolLBService must be enabled.

2.2 UC2: Multi-agency and multi-deployment mission critical communications and
dynamic service scaling

Currently the MCX services deployment from Nemergent (NEM) has the following dependencies:

• Network: Container Network Interface (CNI, any should work).

• Storage: Container Storage Interface (CSI, any should work).

• Seamless monitoring: K8s Prometheus operator is required.

• External access to services, which can be configured to use LoadBalancer or NodePort (see Section 1.3).
The system is by default configured to use LoadBalancer:

o if LoadBalancer is to be used, the cluster should have an implementation or LoadBalancer (it has
been tested using metalLB1).

o If NodePort is to be used, it does not have any requirement.

• Backend and Enabler requires to be able to deploy it in hostnetwork mode.

• Deploying tool: Helm is required. It is not necessary to use Helm on the host machine. Helm can be used
in a remote machine, pointing out to the host machine.

2.3 UC3: Ultra-reliable drone navigation and remote control

The realised applications can be deployed in a K8s environment that includes:

• K8s Master and 2 Worker Nodes (K8s cluster).

• Virtual Private Network (VPN) access: get external access to deploy the Docker image at the K8s cluster.

• Docker Community Edition: for container images.

1 MetalLB, bare metal load-balancer for Kubernetes.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 18

• Container Network Interface (Flannel2): communication between the containers.

• LoadBalancer (metalLB): for communication outside the cluster, with User and Operation control centre.

The Docker image requires 2.5 GB of memory. The Graphical User Interface (GUI) of the QGroundControl con-
tainer application was tested under Ubuntu 20.04 with X11 Server (X11 forwarding).

For the applications, the following resources are required:

• 1 VM with 2 vCPU, 16GB RAM and 30GB hard disk space.

• Required bandwidth Uplink (UL, drone to live video server): Approximately 20Mpbs per video stream.

2.4 UC4: IoT for improving first responders’ situational awareness and safety

The Mobitrust platform is the key technology behind UC4, which is centred on Internet of Things (IoT) for im-
proving first responders’ situational awareness and safety. Thought to be used under challenging conditions and
with few available resources, the deployment of this Network Application under a cloud-native environment
demands a short list of requirements, which can be summarized as:

• Remote access: ensure some form to interact with the K8s cluster from any location (i.e., VPN access).
The goal at this stage is to use kubectl (Kubernetes command-line tool) command, together with YAML3
files describing the deployment of each micro-service (i.e., kubectl apply -n <namespace> -f <yaml_file>).

• LoadBalancer: ensure that a LoadBalancer is installed on the K8s cluster to handle public (i.e., outside
the cluster) exposure of some services, and distribute the load among replicas of each microservice.

• Ingress Controller: ensure that an Ingress Controller is installed in the K8s cluster, to handle HTTP/HTTPS
requests via a single proxy (e.g., NGINX4 Inc. Ingress Controller).

• Persistent storage: even though this is not mandatory, it maintains important data that may need to be
available after events such as downtimes, reboots, etc. As such, persistent storage should be available
through Persistent Volume Claims (PVCs).

• CoreDNS change: it is required that the cluster admin performs a minor change in CoreDNS5, aiming to
map the services in UC4 namespace to its own domain (mobitrust.org, which already has valid Secure
Sockets Layer [SSL] certificates).

2.5 UC5: BlueEye Remote Video

BlueEye Remote video requires:

• Network: Docker image support.

• Storage: single volume required.

• 1 to 6 pod CPU.

• 2GB to 8 GB pod RAM.

2.6 UC6: Fast situational awareness and near real-time disaster mapping

OPTO deployment requires:

• Network: Any CNI should work.

• Storage: Any CSI should work.

2 Flannel (https://github.com/flannel-io/flannel) is a simple, easy way to configure a layer 3 network fabric designed for K8s.
3 YAML (https://yaml.org/) is a human-friendly data serialization language for all programming languages.
4 NGINX (https://www.nginx.com/): Advanced Load Balancer, Web Server, & Reverse Proxy.
5 CoreDNS (https://coredns.io/plugins/kubernetes/) is a plugin that implements the K8s DNS-Based Service Discovery Spec-
ification.

https://github.com/flannel-io/flannel
https://yaml.org/
https://www.nginx.com/
https://coredns.io/plugins/kubernetes/
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 19

• Exposed IP-Ports to receive messages from outside.

• Requires to be able to publish on specified ip-ports (TCP/UDP).

• Delivering docker image tarball (tarball is a tar file).

2.7 UC7: AR and AI wearable electronics for PPDR

Biquo K8s deployment requires:

• Ability to expose K8s Services of LoadBalancer type, enabling both UDP and TCP packets forwarding.

• Persistent storage driver compatible with K8s PersistentVolumeClaim.

• A dedicated K8s namespace.

2.8 UC8: AR-assisted emergency surgical care

UC8, driven by ORAMA, is deployed as a VM rather than a container. Although Docker containers outperform
VMs in the case of space and processing overhead, they are rather immature in graphics acceleration processes.
In the context of UC8, which involves the deployment of an AR-application, the use of VMs is far more advanta-
geous, since they have highly optimized graphics drivers and Kernel-based VM (KVM) pass-through support. Fur-
thermore, Docker containers have limited graphics drivers support since only experimental versions (for all ven-
dors) for Linux are currently available. Additionally, Unity3D support for Linux is still at an experimental stage as
well, making the task of porting the Unity3D-based ORamaVR MAGES Software Development Kit (SDK) to Linux
a difficult and error prone procedure. For all the aforementioned reasons, UC8 is deployed as a VM via KubeVirt.
The general methodology elaborated in the project to support the deployment of VM is described in Section
3.4.2 of Deliverable D1.3.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 20

3 Kubernetes architecture

This Section provides and overview of the architecture of the different UCs. A clear view of the architecture will
enable a better understanding of the instructions provided in Section 4 for the deployment of the use cases.

3.1 UC1: Multimedia Mission Critical Communication and Collaboration Platform

Below is the description of the various services of the UC1 critical communication platform:

• Identity Management Function (IdMF): is responsible for authenticating a Mission Critical Push-To-Talk
(MCPTT) client in the system. For testing purposes, the server can accept any new registration.

• Situation Management Function (SMF): is responsible for managing the situation information: status,
locations, etc.

• Audio Signalisation Function (ASF): handles floor control for audio communications.

• Audio Media Function (AMF): handles real time packets for audio communications.

• Video Signalisation Function (VSF): handles control for video communications.

• Video Media Function (VMF): handles real time packets for video communications.

• Data Management Function (DMF): handles non real time data streams.

• KPI Function (KPIF): Records KPI related to communications.

• Webfront Server (WFS): Web User Interface (UI) for client.

3.2 UC2: Multi-agency and multi-deployment mission critical communications and
dynamic service scaling

Figure 2 illustrates the different micro-services integrated into the MCX application developed by NEM, and their
exposed services: clusterIP, LoadBalancer/NodePort, Headless service. The description of the different micro-
services integrated is provided below:

• MCX Application Server (AS): is responsible for providing control and management of communications
(MCPTT-voice-, MCVideo-video- and MCData-data-). The MCX application server could be divided in two
main roles in the system:

o The MCX Controlling Application Server (CAS): handles the floor control for both private and
group calls, and it forwards media flow as well. Besides the MCX Participating AS, the MCX CAS
could also communicate with other Controlling, or non-Controlling Controlling AS(s).

o The MCX Participating Application Server (PAS): handles the communication with the MCX cli-
ents, and plays the role of a relay point for floor control between the MCX clients and the MCX
CAS. It also manages access and priority control of users to the communication in place and
access control to MCX clients triggering communications (checking the capabilities of each). Fi-
nally, the MCX PAS connects with the anchor points in 5G, such as the Policy Control Function
(PCF) through the N5 interface.

• Identity Management Server (IdMS): is responsible for authenticating an MCPTT client in the system.
The server is provisioned with the client ID, MCPTT ID and password.

• Configuration Management Server (CMS): is responsible for managing the MCPTT/ MCX configurations,
such as user profile, User Equipment (UE) configuration, functional aliases, and service configurations.

• Group Management Server (GMS): is responsible for managing the groups’ information. The groups
could be either be formed by clients/users, or other groups (group regroup).

• Key Management Server (KMS): is responsible for the distribution and storage of security keys, and
information like encryption keys, for the communication of MCPTT calls (private and group), SDS (Soft-
ware-Defined Storage) data protection, management server safe, and integrity-based communication
(both signalling and media).

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 21

• Session Initiation Protocol (SIP) / IP Multimedia Subsystem (IMS) Core: provides the SIP core required
as a SIP register and message forwarding framework. The SIP core is comprised of different elements:
Proxy Call Session Control Function (P-CSCF), Interrogating Call Session Control Function (I-CSCF), Serving
Call Session Control Function (S-CSCF) and Home Subscriber Server (HSS).

• Backend & Enabler: manages sessions between server and end users, and implements different inter-
faces and translations for non-MCPTT systems with MCPTT services.

• Non-relational database: used to store dynamic information, like registered users.

• Database (DB): SQL database used to store micro-service configuration information.

• Enabler-WS: Backend used by Dispatcher.

• HTTP-Proxy: middleware of external HTTP traffic, that inspects and redirects HTTP traffic to the corre-
sponding micro-service.

• MCPTT-Exporter: module that exports monitoring information according the monitoring process instan-
tiated (RabbitMQ or Prometheus).

Figure 2: Kubernetes MCX architecture

3.3 UC3: Ultra-reliable drone navigation and remote control

The services provided for UC3 are:

• Video splitter, to route the drone video signal to the QGroundcontrol Clients and Operation Control
Center.

• QGroundcontrol App (Docker Image), for video playback and drone control.

• Message Broker (RabbitMQ), for forwarding of measurement data.

• Mavlink splitter, for distributing drone information, e.g., position to different clients.

• Access management for drone control, which is available exclusively to one person (feature is planned).

3.4 UC4: IoT for improving first responders’ situational awareness and safety

Figure 3 presents the Mobitrust application’s internal components, following a Network Application model ap-
proach.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 22

Figure 3: UC4 Components

The presented architecture is composed of twelve (12) internal components (micro-services). Additionally, the
three main actors interacting with the deployment of this application are also illustrated. The following list pre-
sents a summative description for each one:

• End-user Devices: These correspond to the Mobitrust BodyKits (BKs), used by the first-responders in the
field. They support 5G communications, sensors data collection, multimedia capture and data pre-pro-
cessing.

• End-user Device Simulator: It is used for integration tests and debug purposes. It simulates the data
streams usually established between a real end-user device (BK) and several Mobitrust components.

• Time Series Database: It corresponds to a database used to store the information collected from the
multiple sensors in the Mobitrust BKs.

• Orchestrator: It is responsible for the management of control data. It deals with authentication and au-
thorization of users, and is also responsible for the setup of end-user device components, including driv-
ers and the establishment of data channels, both for sensors and multimedia devices (cameras and mi-
crophones).

• WebRTC Server: It is the component in charge of handling real-time audio and video transmissions from
the field towards the Command and Control Centre (CCC).

• Message Broker: It corresponds to the communication backhaul of the system. It is responsible for all
the communications among the different application components, following a publish/subscribe model.

• Data Collector: It is the component in charge for collecting and reporting metrics/sensor data. It obtains
all the data from the message broker. This data is mainly generated by the sensors in the end-user de-
vices.

• Monitor: It is responsible for monitoring and reporting on the state of the end-user devices.

• Portal: It provides a way to obtain situational awareness by visualising all the data collected by the plat-
form.

• Relational Database: It corresponds to the component that stores the users’ information, end-user de-
vices details, WebRTC mount points and their associations, as well as the access control policies.

• Data Engine: It is a native data processing engine that can process streams and batch data from the Data
Collector. Custom logic or user-defined functions can be plugged-in to process alerts with dynamic
thresholds, and perform specific actions based on these alerts.

• Gateway: It is responsible for providing the services consumed by the CCC. It contains all backend oper-
ations that enable visualisation of data collected by the platform, as well as the processing of requests
by human operators.

• KPI-Manager: It is responsible for managing the collection, processing and distribution of KPIs originated
by the platform.

• Users’ browser: It corresponds to the visualization of the CCC front-end application. This tool displays
the geo-localisation of every field operator, plus specific per-operator data and streams, such as real-
time video, real-time communications and sensors data (temperature, heartbeat, etc.).

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 23

• Operational App: It corresponds to the mobile version of the CCC, and it is intended to be used by first-
responders in the field. It is typically used by team leaders/commanders.

3.5 UC5: BlueEye Remote Video

RedZinc (RZ) containerized services use video stream with auto-scaling video routers in 5G Edge.

The integrated solution allows critical communications on the move, to send ‘You See What I See’ video to re-
mote experts for support and oversight. In Urban Search and Rescue, BlueEye Handsfree enables the in-field
searcher to send real-time point-of-view video to a remote commander. The remote commander can see the
situation from the searcher’s perspective and provide them appropriate support and expertise. The main com-
ponents of this solution are the following (see Figure 4):

• Video router: it routes video streams between participants in a video call. In a K8s structure, the video
router micro-service can be deployed and scaled as a K8s deployment, which allows it to be easily man-
aged and scaled as needed.

• TURN Server: it helps relay video streams between participants who are unable to establish a direct
peer-to-peer connection. In a k8s structure, it can be managed and scaled as a Kubernetes deployment.

• Medical Hotdesk: it is a shared workspace that is used by medical professionals to access patient infor-
mation and collaborate on medical cases. It is integrated with the video call services to provide a seam-
less experience for medical professionals.

• Image Repository: it is a centralized location for storing and managing container images.

• Orchestrator: it is used to manage the deployment and scaling of the video router, TURN server, medical
hotdesk, and other micro-services that make up the application. It is also configured to integrate with
the TURN server to ensure that video streams are relayed efficiently and reliably.

Figure 4: BlueEye Remote Video use case

3.6 UC6: Fast situational awareness and near real-time disaster mapping

OPTO containerized services use image streams to receive, relay and analyse images, and deliver the result ob-
jects as metadata.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 24

• Proxy: receives image data and publishes it to the Detector (see below). Also publishes the image data
on a specific network port.

• Detector: Receives the image data from the proxy and analyses it. Publishes metadata (e.g., position and
prediction) on a specific network port.

• MQTT-Publisher: Publishes measurement timestamps from proxy and detector to central MQTT in-
stance in the host network.

3.7 UC7: AR and AI wearable electronics for PPDR

Biquo micro-services mainly support the QubeCenter application, which provides a robust infrastructure for
seamless communication between various data producers and devices on the platform. Some of the services
included in this configuration are responsible for generating real-time, high-priority data, that is consumed im-
mediately. Meanwhile, other services are designed to store and archive data, maintaining the necessary inter-
connections for long-term use.

Biquo architectural components are show in

Figure 5, and are described below:

Figure 5: Biquo architecture

• CDN (Content Delivery Network): responsible for delivering data files, configured to reduce latency and
reduce resources footprint.

• PTS (Process to Save): consumes messages from the Queue and saves them to the DB component; does
not need a K8s Service, as it is not accessed neither from the Cluster, nor externally.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 25

• PTLive (Process for Live Data): consumes messages from the Queue, in order to produce real-time data
accessible from other components; does not need a K8s Service.

• PTAggregate (Process for Data Aggregation): consumes messages from the Queue and generates prox-
imity maps of the actors (users, devices) in the system; does not need a K8s Service.

• DB: persistent relational Database Management System (DBMS); persistent data is here added by PTS
components and retrieved by QCenter instance.

• Redis: in-memory data store, used for session management by other components; does not need a K8s
Service.

• Queue (RabbitMQ with AMQP protocol): Message broker, responsible of all the communication among
the involved components, via Advanced Message Queuing Protocol (AMQP) protocol.

• QCenter (Queue Center): web-based platform for managing and configuring services; it provides a cen-
tral interface for managing users, devices and settings.

• Qlive: web-based application exposing real-time geo-located data consumed from the Queue.

• DroneAcquire (Acquisition of Drone Video Streams): acquires streaming video packets from a drone
and serves live feeds, available for consumption by other actors (tested only in FHHI Testbed).

3.8 UC8: AR-assisted emergency surgical care

VMs are used instead of containers, a decision based on the information mentioned in Section 2.8. Although the
5G-EPICENTRE project revolves around supporting containerized solutions, it also maintains backwards compat-
ibility with VM-based applications, when their containerisation is not feasible, or cannot yet produce satisfying
results.

In ORAMA’s UC8, a Windows VM is deployed, that stores:

• The main MAGES-based AR application.

• The TURN server, which circumvents WebRTC’s “smart” behaviour, by forcing specific communication
paths.

These executables, with a combination of Windows Batch files, comprises the first main part of the ORAMA
application (AR_Application_LocalSystem).

For a detailed reference on how KubeVirt will be used to deploy UC8 VM, refer to Section 3.4.2 of Deliverable
D1.3.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 26

4 Instructions for the deployment

This Section provides the guidelines for the deployment of the eight UCs considered in the project.

4.1 UC1: Multimedia Mission Critical Communication and Collaboration Platform

Airbus directly provides K8s native deployment. The provided package ensures the automatic deployment of the
application and its services, just applying the following command line:

$kubectl deploy -f .

4.2 UC2: Multi-agency and multi-deployment mission critical communication and dy-
namic service scaling

Nemergent MCX service can be deployed using Helm, a package manager for K8s. It helps to deploy applications
reading the templates, deploying the services accordingly. If the cluster environment does not support Helm, it
can be used from an external machine pointing out to the cluster. It is assumed that a cluster and a node is
already deployed, if not reference to Section 4.2.1:

helm install --create-namespace --namespace nemergent mcptt chart/

--set imagePullSecrets=<your reguistry json in base64> --set

imageRegistry=<registry repository> --set loadBalancer.enabled=true --

set exporter.prometheusIntegration.enabled=true

imagePullSecrets: registry JSON in base 64, for example, after Docker login in the private registry, this JSON can
be found in ./docker/config.json. It is just required when accessing private registry.

imageRegistry: A repository where containerized images are loaded and could be downloaded from. In NEM’s
case, “registry.nemergentsolutions. com/production”.

Configuration parameters, can be re-configured using the same Helm command, replacing install with upgrade.
If the realm is not set, the realm will be set with the namespace name. NodePort, or LoadBalancer can be used
to expose services, but not at the same time; by default, LoadBalancer is enabled. If both are enabled, the ser-
vices will use LoadBalancer.

4.2.1 Deployment cluster with microK8s

For local deployment microK8s6 are used, an open-source system for automating deployment, scaling, and man-
agement of containerised applications. It provides the functionality of core K8s components, in a small footprint,
scalable from a single node to a high-availability production cluster.

Using CentOS7 snapd needs to be installed first:

> sudo rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-

6 MicroK8s - Zero-ops Kubernetes for developers, edge and IoT.
7 The CentOS Project

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 27

7.noarch.rpm

> sudo yum update

> sudo yum install snapd

> sudo systemctl enable --now snapd.socket

To enable classic snap support, enter the following command:

> sudo ln -s /var/lib/snapd/snap /snap

Install microk8s:

> sudo snap install microk8s --classic

> sudo usermod -a -G microk8s $USER

> sudo chown -f -R $USER ~/.kube

The system will also need to be restarted for the group update to take place.

To be as lightweight as possible, microk8s only installs the basics of a usable K8s installation. Therefore, the
following add-ons should be enabled:

> microk8s enable dns:XXX.XXX.XXX.XXX ingress storage rbac

metallb:LOWER_IP-UPPER_IP

A brief explanation of each of the enabled feature:

• dns: deploys CoreDNS.

• ingress: a simple ingress controller for external access.

• metalLB: deploys the MetalLB Loadbalancer.

• Storage: creates a default storage class, which allocates storage from a host directory. By default, stor-
age add-on uses local filesystem storage to the node where it was added. A more complex storage sys-
tem might be needed in a complex deployment.

• rbac: Enable Role Based Access Control for authorization.

4.2.2 Helm installation

Download the desired version of Helm from: https://github.com/helm/helm/releases.

The installation process is as follows:

> wget https://get.helm.sh/helm-v3.8.0-linux-amd64.tar.gz

tar -zxvf helm-v3.8.0-linux-amd64.tar.gz

> mv linux-amd64/helm /usr/local/bin/helm

4.3 UC3: Ultra-reliable drone navigation and remote control

The installation is done via YAML files under K8s, or as Container Image under Docker CE. HHI provides a native
K8s deployment. The YAML files can be implemented simply by executing:

> kubectl create -f <yaml.file>

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 28

They are uploaded in the gitlab.5gepicenter.eu repository.

The IP address and port of the Docker container containing the QGroundcontrol application must be adjusted in

the YAML file for the video splitter deployment. To install the Docker container, the Docker image must be pulled

from gitlab.5gepicenter.eu repository. Then, it needs to be run with the shell script ‘start-qgc-container.sh’,

which is also uploaded in the gitlab.5gepicenter.eu repository.

4.4 UC4: IoT for improving first responders’ situational awareness and safety

This sub-section aims to present the minimal list of phases needed to deploy UC4 under a cloud native environ-
ment (i.e., K8s cluster or similar).

4.4.1 Pull images from the container registry

The first step consists of establishing the connection to the container registry to be possible to pull the container
images. That may be achieved using the following command:

kubectl -n <namespace> create secret docker-registry <secret_name> --docker-server=<reg-
istry> --docker-username=<username> --docker-password=<access_token> --docker-
email=<email>

For example:

kubectl -n UC4 create secret docker-registry mt-5g-epicentre-secret --docker-server=reg-
istry.5gepicentre.eu --docker-username=deployments-user –docker-password=… –docker-
email=user@5gepicentre.eu

4.4.2 Generate a tls secret for the Ingress Controller

All the communications between the cluster and external networks should be encrypted. Hence, Transport Layer
Security (TLS) secrets are needed (encoded certificate and respective private key). Loading an existing certificate
and key to the cluster namespace can be achieved with the following command:

kubectl create secret tls <secret_name> --key <key.pem> --cert <crt.pem> -n <namespace>

For example:

kubectl create secret tls star.UC4.org-secret --key star.UC4.org-key.pem --cert
star.UC4.org-crt.pem -n UC4

4.4.3 Map an external domain to CoreDNS

The cluster hosting the deployment of this application needs to map the services in UC4 namespace to the Net-
work Application’s own domain (mobitrust.org). As such, a CoreDNS change needs to be performed, which may
be achieved by:

1. Discovering the cluster Fully Qualified Domain Name (FQDN) and UC4 namespace, as well as the domain
to be used (mobitrust.org).

2. Opening the ConfigMap for CoreDNS file:

kubectl edit configmap coredns -n kube-system

3. Add the following rewrite rule (in bold):

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 29

apiVersion: v1

data:

 Corefile: |

 .:53 {

 errors

 health {

 lameduck 5s

 }

 ready

 rewrite stop {

 name regex (.*)\.mobitrust\.org\.$ {1}.5g-epicentre.svc.cluster.local

 answer name (.*)\.5g-epicentre\.svc\.cluster\.local\.$ {1}.mobitrust.org

 }

...

In the previous file, “cluster.local” was the cluster domain, “mobitrust.org” was the Network Application do-
main and “5g-epicentre” was the namespace. It must be highlighted, that this step needs to be performed by
the cluster admin.

4.4.4 Grant permissions

This consists on creating a role binding, which is needed for the WebRTC deployment (the application “media
server”, as described in Section 3.4 to obtain the LoadBalancer IP of its service. The creation of role bindings in
a K8s cluster may be accomplished by:

kubectl create rolebinding <name> --clusterrole=view --serviceaccount=<namespace>:default
--namespace=<namespace>

For example:

kubectl create rolebinding default-viewer --clusterrole=view --serviceaccount=5g-epicen-
tre:default --namespace=5g-epicentre

4.4.5 Deployment

After the completion of the previous steps, the internal components of UC4 may be deployed. Currently, the
deployment is usually achieved with the use of a custom bash script. It contains a list of kubectl commands that
instantiate the different micro-services of the application in the correct order.

To deploy a micro-service, the following command is used together with a YAML (deployment description):

kubectl apply -f <filename> -n <namespace>

While for deleting its deployment:

kubectl remove -f <filename> -n <namespace>

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 30

Considering that some micro-services have dependencies among them (i.e., database access), startup probes
have been implemented to ensure the dependencies are fully running and answering, before those micro-ser-
vices can be deployed. An example of a startupProbe in the a YAML file can be:

startupProbe:

 tcpSocket:

 host:

 port: <port>

 failureThreshold: <maximum_of_attempts>

 periodSeconds: <elapsed_time_per_attempt>

Within the custom bash script, another kubectl command is used to wait on the availability of dependencies
before proceeding, which may be accomplished through:

kubectl wait --for=condition=available --timeout=600s deployment/<service_name> -n
<namespace>

4.5 UC5: BlueEye Remote Video

UC5 containers are not meant to be manually deployed, this means that the containerized micro-services for the
video call service are not meant to be deployed manually by operators or developers. Instead, the deployment
process is automated and managed by an orchestrator service, as it is common practice in a K8s structure, where
containerized applications are deployed and managed using automated tools and processes.

The UC5 Orchestrator Service, with access to the cloud’s kubeconfig file, generates the pod and service defini-
tions, and loads them directly to K8s: The deployment process is automated using an orchestrator service. The
orchestrator service has access to the kubeconfig file, which is a configuration file that provides the necessary
credentials and connection details to interact with the K8s cluster. Using this access, the orchestrator service
generates the pod and service definitions for the containerized micro-services and loads them directly into K8s.
This allows the micro-services to be deployed and managed automatically, without manual intervention.

The UC5 Orchestrator receives “Hello” messages from deployed services as soon as they are up and provides
them with any required extra configurations: The orchestrator service monitors the status of the deployed mi-
croservices. The microservices send "Hello" messages to the orchestrator service as soon as they are up and
running. The orchestrator service then provides any extra configurations, or updates that are required for the
microservices to function properly. It helps monitor the health of the deployed microservices, and provides any
necessary support (or updates) to ensure that the application is running smoothly.

4.6 UC6: Fast situational awareness and near real-time disaster mapping

OPTO is delivering Docker image tarballs, which can be imported into local, or remote Docker registries. To start
a container from these images, OPTO delivers a compose YAML file, which starts the services with all needed
parameters.

4.7 UC7: AR and AI wearable electronics for PPDR

Biquo deployment flow relies on kubectl and git; access to 5G-EPICENTRE git repository and Docker container
registry has to be granted, providing appropriate tokens.

Once the cluster is setup, a Biquo instance can be initiated with the following steps:

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 31

1. Clone the dedicated kuberenets YAML files git repository:

git clone https://gitlab.5gepicentre.eu/youbiquo/biquo

2. Apply the configuration:

kubectl apply -f <directory>

4.8 UC8: AR-assisted emergency surgical care

4.8.1 Requirements

The basic requirements for deploying the UC8 VM are the following:

• LibVirt.

• Linux (or WSL2 on Windows 11 only).

• KVM (already present on WSL2, can be checked with the cpu-checker ubuntu package).
For WSL2, libvirtd and virtlogd should be started as root:

§ sudo su

§ chmod 666 /dev/kvm && libvirtd & virtlogd &

4.8.2 Virtual machine configuration

The base image of UC8 requires a disk image of about 50GB for Windows 10, the AR-application and additional
drivers. For Windows, the latest ISO is used to setup the VM. For the configuration, the following are needed
during the VM setup from virt-manager:

• When prompted for OS ISO, choose the Windows ISO and type in “Windows 10” in the field below
(click ‘show unsupported operating systems’ if the option does not initially appear).

• Storage volume format should be ‘raw’, and size should be at least 50GB.

• RAM is dependent on the computer/node, half amount of the available RAM is a good choice (e.g.,
if 16GB of RAM are available, 8GB of RAM for the VM should be sufficient).

• CPUs should be half the amount of the available cores as well.

• In CPU options, make sure that ‘Copy host configuration’ is enabled (important for perf on WSL2).

• Before finalizing the process, choose 'customize configuration before install':
o Select the SATA Disk created (the 50GB one), and for bus type, choose ‘virtio’.
o For the NIC (create it if it doesn’t exist), choose ‘virtio’ for the device model.
o Add a CDROM virtual hardware disk device, and select the virtio drivers ISO.
o In the Boot Options, make sure that the installer iso is first, and the 50GB disk is second.

4.8.3 Virtual machine deployment

The UC8 edge server component will be deployed via libvirt on a LXD8 container, as a VM running Windows 10.
The edge node is equipped with an NVIDIA GeForce RTX 2080 Ti GPU card, suitable for the needs of a high-fidelity
AR application. The CPU of the VM is an Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz, with 16GB of RAM. The VM
deployed needs exclusive use of the GPU with GPU pass-through, since vGPU licensing is not available in the
testbed. The scenario will take advantage of the capabilities and number of servers that CTTC facilities can pro-
vide. To provide GPU access, the KubeVirt kubernetes module is used, which can provide hardware devices to

8LXD (https://linuxcontainers.org/lxd/introduction/): Linux Container

https://linuxcontainers.org/lxd/introduction/

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 32

libvirt. To support GPU pass-through, VFIO is used to disable GPU utilization from within the host operating sys-
tem, and hand it off to libvirt. It is important to note that this is done in the host system; meaning that no other
application can make use of the GPU during the VM’s runtime.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 33

5 Virtualized core networks

5.1 Athonet 5GC

Athonet (ATH) provides a fully Standalone (SA) software-based 5G mobile core (5GC) network for voice and data
services, running in public and private clouds, or in a commercial off-the-shelf hardware (‘in a box’). The software
is completely virtualized, and implements all the needed core network components exposing 3GPP-standard
interfaces. This solution allows the 5GC to connect to any standardized 5G radio/user equipment and Data Net-
works (DNs), in order to provide a complete end-to-end service.

Although the provided ATH 5GC is not designed to be deployed on a K8s cluster, it runs as a VM over a commer-
cial-off-the-shelf hardware, managed by a VMware hypervisor instance. Every Network Function (NF) is directly
packaged as an independent OCI (Open Container Initiative) container, running on a container runtime in the
VM. This design makes the 5GC modularized, and its micro-service architecture enables deployments that can
split control-plane and user-plane, as well as allowing interoperability with different vendors’ core components.

In particular, referring to Figure 6, the currently provided NFs and their exposed standardized interfaces are:

• Access and Mobility Management Function (AMF), which exposes the N1 and N2 interfaces.

• Session Management Function (SMF), which exposes the N4 interface.

• User Plane Function (UPF), which exposes the N3, N4 and N6 interfaces.

• Unified Data Management (UDM).

• Authentication Server Function (AUSF).

• Unified Data Repository (UDR).

• Policy Control Function (PCF), which exposes the N5 interface.

• Network Repository Function (NRF).

• Network Slice Selection Function (NSSF).

Figure 6: ATH 5G core network and its interfacing.

The 5GC is equipped with an integrated monitoring system (Prometheus9 and Grafana10), adopted to collect and
visualize 3GPP standard-defined 5GC KPIs. This information can be shipped to any other tool able to catch Pro-
metheus output data.

9 Prometheus (https://prometheus.io/): Monitoring System & Time Series database.
10 Grafana (https://grafana.com/); The Open Observability Platform.

https://prometheus.io/
https://grafana.com/

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 34

Virtualization of the 5GC facilitates its deployment in heterogeneous infrastructures, such as hyperscalers, pri-
vate or public cloud frameworks, private premises, etc. Furthermore, the ATH 5GC solution offers open and
standard 3GPP interfaces, allowing interaction with any other standard-compliant external component (e.g., Ra-
dio Access Network [RAN], orchestrators, UEs, analytic/monitoring systems, Application Functions).

5.2 Open5GS

The containerized Open5GS deployment has the following dependencies:

• K8s environment as a container orchestrator.

• K8s cluster and Helm Chart version 3.

• Calico CNI - Container Network Interface plugin.

• Open5GS Docker image.

The K8s 5G SA core functions are implemented through the deployment of Open5GS. This incorporates several
network functions to facilitate the deployment of the 5G core functions and integrated with Amarisoft RAN (gNB)
in a K8s format. The deployment Open5GS SA Core contains set of functions such as: NRF, Service Communica-
tion Proxy (SCP), AMF, SMF, UPF, AUSF, UDM, UDR, PCF, NSSF, and Binding Support Function (BSF).

The core of 5G SA employs Service-Based Architecture (SBA), wherein control plane functions are configured to
register with the NRF. The NRF in turn assists in the discovery of other core functions. The AMF takes care of
connection and mobility management and gNBs (5G basestations) are connected to the AMF. The UDM, AUSF,
and UDR are responsible for generating Subscriber Identity Module (SIM) authentication vectors and holding
subscriber profiles. Session management is handled by the SMF. The NSSF provides network slice selection, while
PCF is used for enforcing subscriber policies and charging. Lastly, the SCP facilitates indirect communication. The
user plane of the 5G SA core comprising just one function. The UPF is responsible for transporting user data
packets between the gNB and the external Wide Area Network (WAN), and it is also connected to the SMF.

Similar to the generic deployment, the containerized Open5GC can support 3GPP Release 16, Universal SIM
(USIM) cards (using Milenage), and multiple Protocol Data Unit (PDU) sessions.

D2.3 Cloud-native services containerization

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 35

6 Deployment issues

Most of the issues faced during the deployment of the different UCs in the different platforms have been related
to the networking. In general, the solutions were not fully containerised before this project, or had only been
tested in single node K8s environments. When deployed in 5G-EPICENTRE testbeds, strange behaviour was de-
tected in some of the pods. Internal processes led to debug the problems found, to enable the solutions to work
in this kind of environment. Here, the most relevant fixes applied during the different deployments are provided.

6.1 Networking issues

In UC4, some of the services require to be accessible via FQDN. In order to achieve that, a CoreDNS addition
should be provided. During the tests, access to those services has been possible by specifying direct IP address
in dedicated ConfigMap, but this requires a subsequent deploy of a single file after IP assignment, provided by
the Load Balancer.

In UC3, a direct connection of the application server, running the QGroundcontrol App, to the 5GC is necessary.

6.2 Storages issues

NEM’s MCX solution requires storage volumes, where the information of the different tenants, groups, users,
etc. should be stored. This information must be stored even if the service is re-instantiated or restarted, other-
wise deployment’s provisioning must be done again. This is done using persistent volumes, and pods specifically
dedicated to this task. The new multi-mode context, to which the solution has been exposed, has led to problems
with these volumes, which have been fixed.

Even though it is not mandatory, to achieve its full capacities, ONE’s Mobitrust solution also requires persistent
storage. This ensures that relevant information that is not loaded at startup (i.e., changes to users, devices, pol-
icies, etc.) is kept, even during power failures, reboots and other events, where volatile storage is cleared. The
provisioning of storage at the K8s cluster is performed using PVCs. The dynamic provisioning of PVCs in the two
testbeds where UC4 is deployed has faced some challenges, due to different storage backends, and their inte-
gration with K8s, which have been overcome thanks to the joint efforts of the involved partner teams.

6.3 Security issues

Pods’ excessive weight has also been detected, after service’s long-runs testing. There is an ongoing work to
address these issues in order to improve the deployment time KPI. The weight of each pod is being lightened
when possible, and the solution presented in D2.1 and D2.7 is being improved.

6.4 Other issues

The cluster hosting the deployment of the UC4 Network Application needs to map all related services to the
Meritrust’s own domain (mobitrust.org). Since clusters are multi-tenant, and have multiple applications, chang-
ing the domain of the cluster is not a viable solution. Upon trying to find a simple solution that does not bypass
K8s CoreDNS (and still uses it for internal communication), the easiest fix was a change to CoreDNS configuration,
that maps all FQDNs of services in UC4 namespace to another domain (mobitrust.org), and vice-versa.

