

This project has received funding from the European Union's Horizon 2020 In-
novation Action programme under Grant Agreement No 101016521.

www.5gepicentre.eu

5G ExPerimentation Infrastructure hosting Cloud-nativE
Netapps for public proTection and disaster RElief

Innovation Action – ICT-41-2020 - 5G PPP – 5G

Innovations for verticals with third party services

D2.2 Cloud-native infrastracture

Delivery date: April 2023

Dissemination level: Public

Project Title: 5G-EPICENTRE - 5G ExPerimentation Infrastructure hosting Cloud-nativE Netapps for pub-

lic proTection and disaster RElief

Duration: 1 January 2021 – 31 December 2023

Project URL https://www.5gepicentre.eu/

https://www.5gepicentre.eu/

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 2

Document Information

Deliverable D2.2: Cloud-native infrastructure

Work Package WP2: Cloud-native 5G NFV

Task(s) Task 2.1: Cloud-native infrastructure

Type Other

Dissemination Level Public

Due Date M28, April 30, 2023

Submission Date M28, April 27, 2023

Document Lead Apostolos Siokis (IQU)

Contributors Kostas Ramantas (IQU)

Carlos Martins Marques (ALB)

Manuel Requena (CTTC)

Hamzeh Khalili CTTC)

Josep Mangues (CTTC)

Fatemehsadat Tabatabaeimeher (CTTC)

Ankur Gupta (HHI)

Kirsten Krüger (HHI)

Holger Gäbler (HHI)

Nicola di Pietro (ATH)

Jorge Marquez Ortega (UMA)

Almudena Diaz (UMA)

Internal Review Jorge Carapinha (ALB)

Bruno Garcia (UMA)

Disclaimer: This document reflects only the author's view and the European Commission is not responsible for

any use that may be made of the information it contains. This material is the copyright of 5G-EPICENTRE consor-

tium parties, and may not be reproduced or copied without permission. The commercial use of any information

contained in this document may require a license from the proprietor of that information.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 3

Document history

Version Date Changes Contributor(s)

V0.1 05/12/2022 Initial deliverable structure Apostolos Siokis (IQU)

V0.2 19/12/2022 Section 2
Apostolos Siokis (IQU)

Kostas Ramantas (IQU)

V0.3 23/02/2023 Section 3.1

Jorge Marquez Ortega (UMA)

Almudena Diaz (UMA)

Nicola di Pietro (ATH)

V0.4 02/03/2023 Section 3.2 Carlos Martins Marques (ALB)

V0.5 03/03/2023 Sections 3.3, 3.4
Manuel Requena (CTTC)

Ankur Gupta (HHI)

V1.0 28/03/2023
Integration of the material, Introduction,
Conclusions, Executive Summary. Version
preparation for internal review.

Apostolos Siokis (IQU)

V1.1 17/04/2023 Internal Review
Jorge Carapinha (ALB)

Bruno Garcia (UMA)

V1.5 24/04/2023 Version with suggested revisions Apostolos Siokis (IQU)

V1.6 26/04/2023
Quality review: copyediting; proofreading;
formatting

Stefania Stamou (FORTH)

Konstantinos C. Apostolakis
(FORTH)

V2.0 27/04/2023 Final version for submission Apostolos Siokis (IQU)

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 4

Project Partners

Logo Partner Country Short name

AIRBUS DS SLC France ADS

NOVA TELECOMMUNICATIONS SINGLE MEMBER
S.A.

Greece NOVA

Altice Labs SA Portugal ALB

Fraunhofer-Gesellschaft zur Förderung der
angewandten Forschung e.V.

Germany HHI

Foundation for Research and Technology Hellas Greece FORTH

Universidad de Malaga Spain UMA

Centre Tecnològic de Telecomunicacions de Cata-
lunya

Spain CTTC

Istella SpA Italy IST

One Source Consultoria Informatica LDA Portugal ONE

Iquadrat Informatica SL Spain IQU

Nemergent Solutions S.L. Spain NEM

 EBOS Technologies Limited Cyprus EBOS

Athonet SRL Italy ATH

RedZinc Services Limited Ireland RZ

OptoPrecision GmbH Germany OPTO

Youbiquo SRL Italy YBQ

ORamaVR SA Switzerland ORAMA

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 5

List of abbreviations

Abbreviation Definition

3GPP
3rd Generation Partnership Project

5G-PPP
5G Infrastructure Public Private Partnership

AMF
Access and Mobility Management Function

API
Application Programming Interface

CNI
Container Network Interface

CNF
Cloud-Native Network Functions

CPU
Central Processing Unit

CU
Centralised Unit

DNS
Domain Name System

DU
Distributed Unit

EU
European Union

GA
Grant Agreement

gNB
gNodeB

GPU
Graphics Processing Unit

HTTP
Hypertext Transfer Protocol

IT
Information Technology

JSON
JavaScript Object Notation

K8s
Kubernetes

MANO
Management And Orchestration

MEC
Multi-Access Edge Computing

NFV
Network Function Virtualisation

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 6

NFS
Network File System

NR
New Radio

NSA
Non-Stand-Alone

OS
Operating System

OSM
Open Source MANO

PLMN
Public Land Mobile Network

PNF
Physical Network Functions

QoS
Quality of Service

R&D
Research and Development

(O-)RAN
(Open) Radio Access Network

OSM
Open-Source MANO

PLMN
Public Land Mobile Networks

RBAC
Role-Based Access Control

RESTful
Representational State Transfer

RRH
Remote Radio Head

RU
Radio hardware Unit

SA
Stand-Alone

SaS
Services as networkS

SMF
Session Management Function

TI
Testbed Instance

UC
Use Case

UDM
Unified Data Management

UE
User Equipment

UPF
User Plane Function

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 7

URLLC
Ultra-Reliable Low Latency Communications

USRP
Universal Software Radio Peripheral

VE
Virtual Environment

VIM
Virtualised Infrastructure Manager

VLAN
Virtual Local Area Network

VM
Virtual Machine

VNF(M)
Virtual Network Function (Manager)

VPN
Virtual Private Network

VR
Virtual Reality

YAML
YAML Ain't Markup Language

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 8

Executive summary

This document presents the 5G-EPICENTRE D2.2 “Cloud-native infrastracture”, and corresponds to Task T2.1
“Cloud-native Infrastructure”.

This deliverable stands as a public report, providing details regarding the cloud-native transformation of the
infrastracture for each testbed used in the project. More specifically, details are provided about the approach
followed by each testbed in order to cloud nativise their core and to support Kubernetes (orchestration, Open-
stack, bare metal approach, etc.), as well as the infrastructure software and hardware components. Information
about the 5G network (as well as the used monitoring system) is also included.

A special emphasis is given to the presentation of guidelines for access to the Kubernetes platforms: the prelim-
inary steps required to perform a deployment on the testbeds are presented separately for each testbed used
in the project.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 9

Table of Contents

List of Figures ... 10
List of Tables .. 11
1 Introduction ... 12

1.1 Mapping of Project’s Outputs .. 12
1.2 Structure of the Document .. 13

2 Benefits of Cloud-native transformation in 5G networks ... 14
3 Cloud-native transformation of the infrastructure in the project .. 15

3.1 Málaga testbed (UMA) ... 15
 Infrastructure software components .. 16
 Namespace management .. 17
 5G network .. 17
 Hardware approach ... 17
 Example use case ... 18
 Dynamic persistent storage allocation .. 18
 Kubernetes support guidelines ... 18

3.2 Aveiro testbed (ALB) ... 20
 5G system .. 20
 Hardware approach ... 22
 Kubernetes support guidelines ... 23

3.3 Barcelona testbed (CTTC) ... 24
 Infrastructure software components .. 24
 5G network .. 25
 Hardware approach ... 25
 Example use cases ... 27
 Kubernetes support guidelines ... 27

3.4 Berlin testbed (HHI) .. 28
 5G network .. 29
 Hardware approach ... 29
 Kubernetes support guidelines ... 30
 5G testbed management ... 31

4 Conclusions .. 32
References ... 33

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 10

List of Figures

Figure 1: Representation of the K8s structure .. 15

Figure 2: Arrangement of K8s elements in the infrastructure, and physical view of the 3 servers 17

Figure 3: Deployment and network traffic use case ... 18

Figure 4: Dynamic memory allocation diagram .. 19

Figure 5: Representation of the Aveiro K8s structure ... 20

Figure 6: Open5GCore (Image is ©Fraunhofer FOKUS, retrieved from [3]) ... 21

Figure 7: Druid Raemis (Image is ©Druid Software [4]) .. 21

Figure 8: Cyrus 2.0 vRAN architecture (Image is ©Intel Corporation [6]) ... 22

Figure 9: Infrastrutcture hardware components .. 23

Figure 10: Virtual machines running in physical server... 23

Figure 11: Representation of the CTTC K8s structure ... 24

Figure 12: CTTC 5G testbed ... 26

Figure 13: Part of the CTTC 5G testbed showing some of the servers and the Amarisoft 5G equipment 26

Figure 14: Part of the CTTC 5G testbed. EXTREME Testbed ® ... 27

Figure 15: Testbed Instances for the use cases and other components of the CTTC 5G Barcelona testbed 27

Figure 16: K8s structure at 5G Berlin testbed ... 28

Figure 17: Topology of 5G core from NG4T... 29

Figure 18: Network architecture of 5G Berlin testbed .. 30

Figure 19: Nokia gNB and Nokia RRH .. 30

Figure 20: 5G Core, Application server, FortiGate .. 31

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 11

List of Tables

Table 1: Adherence to 5G-EPICENTRE’s GA Task Descriptions ... 12

Table 2: Infrastracture Software ... 16

Table 3: Namespaces in the HHI testbed .. 28

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 12

1 Introduction

5G-EPICENTRE represents an attempt to federate 5G testbed infrastructures across the European Union (EU)
with the specific purpose to address the needs and demands of the public safety and emergency and disaster
management market needs. An important step to this end is the cloud-native information of the infrastructure
offering benefits, such as flexibility supporting the accommodation of changing network requirements and scala-
bility. The support of Kubernetes (K8s) as an orchestrator is a necessary condition in order to enable the federa-
tion of the four testbeds in the project using Karmada (work carried out within T4.3 “Cross-testbed federation
and synchronization”).

This deliverable aims at presenting details regarding the approach each testbed follows to support K8s, as well
as the infrastructure software and hardware components used, and details about the monitoring system utilised
in each case. Since there is not a common approach followed by all four testbeds to cloud nativise their infra-
structure, a separate section is dedicated for every testbed in the project where the aforementioned details are
presented for every case.

1.1 Mapping of Project’s Outputs

The purpose of this section is to map 5G-EPICENTRE Grant Agreement (GA) commitments within the formal Task
description, against the project’s respective outputs and work performed.

Table 1: Adherence to 5G-EPICENTRE’s GA Task Descriptions

5G-EPICENTRE Task Respective Document Chapters Justification

Task 2.1: Cloud-native infrastruc-
ture

“The purpose of this Task is to ap-
ply a cloud-native approach to the
5G Core, by smoothly evolving the
existing NFV Infrastructure (NFVI)
of the 5G-EPICENTRE testbeds […]
to K8s, the de-facto container or-
chestration system for automating
application deployment, scaling
and management.

Section 3.1 – Málaga testbed
(UMA)

Section 3 presents details for the
cloud-native transformation of the
infrastructure, and the support of
K8s in the four testbeds (in four dif-
ferent subsections, one dedicated
for every testbed).

Section 3.2 – Aveiro testbed (ALB)

Section 3.3 – Barcelona testbed
(CTTC)

Section 3.4 – Berlin testbed (HHI)

Task 2.1: Cloud-native infrastruc-
ture

“[…]To accommodate for the mi-
gration of existing VM-based VNFs
and workloads that are tradition-
ally difficult to containerize, and
thus cater to both monolithic VMs
and containers’ integration to the
MANO, appropriate virtualization
APIs, such as KubeVirt, will be uti-
lized, so as to run existing VMs in-
side containers.”

Section 3 – Cloud-native transfor-
mation of the infrastructure in the
project

Section 3 presents details for the
cloud-native transformation of the
infrastructure of the four testbeds.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 13

1.2 Structure of the Document

The structure of this deliverable has been divided into multiple Sections, in order to present the different ap-
proaches followed by the testbeds in Task 2.1. In Section 1 we introduced the current deliverable (D2.2) and
explained what to expect from its content. It mapped each Section to specific need requested from the GA,
specifically from T2.1. Section 2 then briefly presents the benefits of cloud-native transformation in 5G networks.
Section 3 is the main section of this deliverable. It is divided in four sub-sections, one dedicated for each testbed
in the project (respective sections for UMA, ALB, CTTC, HHI testbeds) A sub-section is dedicated to every testbed
briefly describing the steps that have to be taken when an experimenter wants to perform a deployment on the
specific testbed. Section 4 concludes the deliverable.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 14

2 Benefits of Cloud-native transformation in 5G networks

“Cloud-Native” is the name of an approach for designing, building and running applications that fully exploit the
benefits of the cloud computing model [1] [2]. This means that the apps can be built and changed more quickly,
are more agile and scalable, and are more easily connected with other apps. The cloud-native approach is the
way applications are created and deployed, not where they are executed. New operational tools and services,
like continuous integration, container engines and orchestrators are pillars of this transformation.

Physical Network Functions (PNF) and Virtual Network Functions (VNF) [1] will continue to be used for at least
another decade. The most promising approach is to allow the evolution of PNFs and VNFs to become Cloud-
Native Network Functions (CNFs). Moving network functionality from physical hardware to encapsulating the
software in a Virtual Machine (VM) is generally easier than containerising the software. There has been a similar
journey on the software stack deployed currently in telco eco-system and at 5G Infrastructure Public Private
Partnership (5G-PPP level). Most of the prototypes and the project realisation moved from a pure OpenStack
ecosystem, derived by ETSI MANO, to include the capability to run K8s on top of either bare metal or any cloud
where the intelligence is still centralised in the VNF Manager (VNFM). In the future version, most functions will
be CNFs, while for VNFs that cannot, or have not yet been ported to CNFs, technologies such as KubeVirt or
Virtlet can be used.

The expected benefits of the cloud-nativisation in 5G networks are the following:

 Speed: Companies of all sizes now see strategic advantage in being able to move quickly, and get ideas
to market fast.

 Scalability: 5G networks require a highly scalable infrastructure, and cloud-native technology provides a
flexible and scalable platform to meet the demands of 5G services.

 Automation: Cloud-native systems allow for automatic provisioning and orchestration of network func-
tions and services, reducing manual processes and increasing efficiency.

 Virtualisation: 5G networks require VNFs to support dynamic network slicing, and cloud-native technol-
ogy provides a platform for efficient and cost-effective deployment of VNFs.

 Flexibility: Cloud-native systems provide a flexible infrastructure that can accommodate changing net-
work requirements, enabling rapid innovation and deployment of new services and applications.

 Cost-effectiveness: Cloud-native technology reduces the capital expenditures and operational costs as-
sociated with traditional network infrastructures, making it an attractive option for 5G network opera-
tors.

Overall, the use of cloud-native technologies in the 5G Core can help improve the performance, reliability, and
agility of the 5G network, and to support the development and deployment of new 5G services and applications.
By enabling organisations to more easily and efficiently develop, deploy, and manage their 5G services, cloud-
native technologies can play a key role in driving the adoption and growth of 5G networks and services.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 15

3 Cloud-native transformation of the infrastructure in the project

This Section provides details about the approach each testbed follows in order to cloud nativise their infrastruc-
ture and to support K8s. Sub-sections 3.1, 3.2, 3.3 and 3.4 are dedicated to UMA, ALB, CTTC and HHI testbeds
respectively. There is a dedicated sub-section in these four sub-sections providing K8s support guidelines, briefly
describing the steps that have to be taken when an experimenter wants to perform a deployment on the specific
testbed.

3.1 Málaga testbed (UMA)

The K8s deployment in the Malaga testbed is based on a multi-master deployment to provide high availability.
The deployment is composed of 3 masters that manage 3 nodes, with an additional node dedicated to the stor-
age as shown in Figure 1.

Figure 1: Representation of the K8s structure

Access to the nodes is implemented through a load balancer, to ensure the correct distribution of work among
the nodes. Since the deployment is installed in a bare-metal structure, MetalLB has been used in conjunction
with the NGINX Ingress Controller for the implementation of the network interfaces in the load balancer and the
access control.

The management of the resources and deployments are done through kubectl, and the container runtime used
is containerd. For security reasons, access to the functionalities is based on a role-based access scheme (RBAC),
which provides isolation and prevents possible issues affecting each user’s deployments. For the monitoring of
measurements on the K8s infrastructure, Prometheus is used, together with a prometheus-node exporter, as
well as an Alert Manager for the management of possible system alerts.

Finally, use has been made of the KuberVirt module to enable the deployment of VMs on top of the containerised
infrastructure. The entire structure is virtualised using VMs created with Promox Virtual Environment (VE) and
VMWare Vsphere hypervisors.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 16

 Infrastructure software components

This Section provides a more detailed explanation of the infrastructure software components.

Table 2: Infrastracture Software

Software Description

MetalLB1 MetalLB is an open-source load balancer driver that allows external access to services
in a K8s cluster running on a network insfrastructure that does not support Layer 2 load
balancing. This tool is intended for the implementation of a load balancer in bare-metal
systems.

NGINX-Ingress2 This is an ingress controller that runs as a deployment on the K8s cluster. It provides
load balancing and custom traffic routes for services running on the cluster. This tool is
intended to optimise traffic supported by the different services deployed in the cluster.

Kubectl3 This component provides command-line tools to interact with K8s clusters. It is used to
manage K8s resource, such as pods, services and replicaset, and execute commands and
tasks in the cluster. This tool enables cluster management and administration by users.

Calico4 Calico is an open-source project that provides a scalable networking and security solu-
tion for K8s clusters. It uses a flat, non-overlay network model to route traffic and pro-
vide network-level security for containers and applications. Thanks to this tool, it is pos-
sible to create Domain Name System (DNS) services and routing between the different
pods deployed on the cluster nodes.

KubeVirt5 This is an open-source project that offers a VMs virtualisation option on K8s clusters.

GlusterFS6 +Heketi7 GlusterFS is an open-source distributed file system used to store data on server clusters.
Heketi is a tool that simplifies the administration of GlusterFS, allowing the creation and
management of volumes in the K8s cluster. Thanks to Heketi access and management
of volumes by system masters to designated storage nodes is possible.

Prometheus8 Prometheus is a highly scalable open-source monitoring framework. It provides out-of-
the-box monitoring capabilities for the K8s container orchestration platform. Also, In
the observability space, it is gaining huge popularity as it helps with metrics and alerts.
Prometheus is used in conjunction with a node exporter to provide metrics on the dif-
ferent components of the system.

1 https://metallb.universe.tf/
2 https://docs.nginx.com/nginx-ingress-controller/
3 https://kubernetes.io/docs/tasks/tools/
4 https://docs.tigera.io/calico/latest/about/
5 https://kubevirt.io/
6 https://www.gluster.org/
7 https://github.com/heketi/heketi
8 https://prometheus.io/

https://metallb.universe.tf/
https://docs.nginx.com/nginx-ingress-controller/
https://kubernetes.io/docs/tasks/tools/
https://docs.tigera.io/calico/latest/about/
https://kubevirt.io/
https://www.gluster.org/
https://github.com/heketi/heketi
https://prometheus.io/

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 17

 Namespace management

Regarding the organisation of the namespaces, the monitoring tools have their own namespace called “monitor-
ing”, the rest of the components are scattered throughout the structure or contained in the “kube-system”
namespace. Finally, each partner has its own namespace. In this way, there is an isolation between the functions
of each partner and the cluster administration functions.

 5G network

For the management of the 5G network, UMA has an instance of the 5G Core provided by Athonet (ATH)9. This
5G Core is software-based, and provides a network for both data and voice services.

The 5G Core software is fully virtualised running on VMs through an instance of the VMWare hypervisor.

 Hardware approach

The hardware implementation of the platform consists of 3 physical servers, specifically two Dell Poweredge
R740 servers both virtualszed with Proxmox VE Hypervisor and a Dell Poweregde R730 server virtualised with
the VMWare VSphere ESXI hypervisor. The distribution of the structure between the different servers is shown
in Figure 2.

Figure 2: Arrangement of K8s elements in the infrastructure, and physical view of the 3 servers

For the management of the infrastructure, there is a management network for the administration of the hyper-
visors and a production network for the administration of the K8s framework they contain. The access to the
infrastructure by the experimenters is done through a Virtual Private Network (VPN) implemented on the
testbed.

9 https://athonet.com/products/athonet-5g-core/

https://athonet.com/products/athonet-5g-core/

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 18

 Example use case

A possible use case can be represented by a registered experimenter, who wants to deploy their application on
the testbed.

To do so currently, they will apply their deployment using kubectl. The deployment will be handled by the Load-
Balancer (MetalLB) for the correct distribution of resources. The communication between the elements of the
deployment deployed along the different nodes is carried out by Calico. Finally, for the management of the traffic
sent to the different elements of the deployment, NGINX-Ingress will be used. This behavior is illustrated in Figure

3.

Figure 3: Deployment and network traffic use case

 Dynamic persistent storage allocation

For dynamic allocation of storage volumes, GlusterFS is used in conjunction with Heketi. When a user wants a
persistent storage volume, they request it through a persistent volume claim. This request is processed by the
Heketi service installed on the master, which communicates with the GlusterFS server installed on the storage
node. The storage node will allocate the persistent memory volume to the indicated deployment (Figure 4).

 Kubernetes support guidelines

When an experimenter wants to perform a deployment on the cluster, a series of preliminary steps must be
taken.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 19

Figure 4: Dynamic memory allocation diagram

First, a preparation of configuration files is needed: to deploy an application on a K8s cluster, configuration files
describing the different resources to be deployed must be created. These resources include pods, services, vol-
umes and configurations.

Second, a deployment configuration file needs to be created: The deployment configuration file describes how
the pods and associated resources are to be deployed in the cluster. This file should include information, such as
the number of replicas to be deployed and the container image to be used, usually this file is expressed in a YAML
format.

Thirdly, the application should be deployed to the cluster: once the configuration files have been prepared and
the deployment configuration file has been created, the application can be deployed to the cluster using kubectl,
the K8s command-line tool. Next, it is a good practice to check the deployment status. Once the application has
been deployed, the status can be checked by using kubectl commands. For example, it can be checked if the
pods have started correctly, and if the services are accessible.

If we want to update the application after the application is deployed, we can perform updates to fix bugs, or
add new functionality. Updates are performed by creating a new version of the deployment configuration file,
and updating the pods and other associated resources.

Overall, the deployment process in K8s is very flexible and scalable, allowing developers and system administra-
tors to build and manage applications efficiently and effectively.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 20

3.2 Aveiro testbed (ALB)

The Aveiro testbed includes a K8s-based infrastructure with a master and multi-node architecture, as shown in
Figure 5. The cluster includes four worker nodes, two of them acting as the persistent storage server.

Figure 5: Representation of the Aveiro K8s structure

The entire structure is virtualised, using VMs created with Openstack. All the nodes are running Debian as the
main operating system (OS), and the container runtime is containerd. Regarding the network specifications, the
Container-Network Interface (CNI) in use is Flannel (Flannel is a simple and easy way to configure a layer 3 net-
work fabric designed for K8s), combined with MetalLB for the load balancing and the NGINX Ingress Controller.
Concerning persistent storage, we have installed GlusterFS and Heketi for its dynamic provision.

For security reasons, access to the functionalities is based on RBAC per use case / third-party company. For the
monitoring of measurements on the K8s infrastructure, Prometheus is used together with a prometheus-node
exporter.

Regarding the organisation of the namespaces, each use case / third-party company has its own namespace. This
namespace organisation with the RBAC functionality allows the isolation between the functions of each partner
and the cluster administration functions.

The system components use the default namespace (kube-system), and the monitoring tools use a specific
namespace (monitoring).

The infrastructure software components are based in the following open-source K8s components: containerd,
MetalLB, NGINX-Ingress, Kubectl, GlusterFS, Heketi, Prometheus and Flannel. More information can be found in
the previous Section (Section 3.1.1).

The dynamic allocation of storage volumes was already been described in Section 3.1.6. Also, an example use
case can be found in the previous Section 3.1.5.

 5G system

For the 5G network, the Aveiro testbed uses two different 5G Cores:

 Fraunhofer FOKUS Open5GCore (fully virtualised, running on a VM).

 Druid (fully virtualised, running on containers).

The Fraunhofer FOKUS Open5GCore toolkit [3] is the worldwide first practical implementation of the 3rd Gener-
ation Partnership Project (3GPP) 5G Core network. It prototypes 3GPP Release 15 and 16 core network function-
ality, in a form suitable for research and development (R&D) activities. Open5GCore is interoperable with 5G
New Radio (NR) base stations and user equipment (UE), as shown in Figure 6 (for more information, see D4.4
“5G-EPICENTRE experimentation facility”, Section 4.2.3).

Master

Worker 1 Worker 2
Worker 3

(Storage 1)

Worker 4

(Storage 2)

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 21

Figure 6: Open5GCore (Image is ©Fraunhofer FOKUS, retrieved from [3])

Druid’s cellular solutions for business are built on its Raemis technology platform [4]. Raemis is a set of cellular
software assets optimised for business use cases. The Raemis platform harnesses 5G, 4G, 3G, 2G and Wifi radios
from any vendor, to implement standalone cellular core network solutions. It also integrates with mobile net-
work operators, using standard interfaces for giving access to all of the radio resources of these operators, as
shown in Figure 7.

Figure 7: Druid Raemis (Image is ©Druid Software, retrieved from [4])

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 22

Druid Raemis 5G Core main features are:

 Solution specifically designed for private networks.

 5G Ultra-Reliable Low Latency Communications (URLLC) data slicing.

 Configuration of Radio Quality of Service (QoS) and Radio Congestion Control per network.

 5G Radio Network Slicing.

 Open Representational State Transfer (RESTful) Application Programming Interface (API) to enable Ma-
nagement and Orchestration (MANO) and third-party applications integration.

 Creation of multiple Packet Data Networks with QoS allocation.

 Definition of radio zones to logically group multiple gNodeB devices together.

 Resilience and redundancy options.

 Real-time System Monitoring.

For the 5G Radio Access Network (RAN), the Aveiro testbed is based on the ASOCS RAN solution.

ASOCS has built its fully virtualised CYRUS 2.0 5G vRAN solution [5] [6], that utilises the open fronthaul interface
defined by Open RAN (O-RAN) and can support diversified use cases, offering flexible business models for oper-
ators, businesses, enterprises, and neutral host providers that need micro, metro, and macro scale networks.

This solution is split in multiple components, following the 3GPP 5G RAN architecture, namely Centralised Unit
(CU), Distributed Unit (DU) and Radio Unit (RU), as shown in Figure 8 (for more information see D4.4 Section
4.2.3).

Figure 8: Cyrus 2.0 vRAN architecture (Image is ©Intel Corporation, retrieved from [6])

 Hardware approach

The hardware implementation consists of different hardware components:

 The K8s and Open5GCore platform consists of 1 physical server Dell Power Edge R740xd, specifically
virtualised with OpenStack.

 The ASOCS solution includes EVK Case, Servers, Switches, Indoor RU, POE, CPE, SIM Cards, cables.

The infrastructure hardware components can be seen in Figure 9.

Regarding the VMs running in the physical server (Dell Power Edge R740xd), they can be separated in different
groups: the VMs that compose the K8s cluster, the VMs necessary for the 5G-EPICENTRE components and the
5G Core. A Graphical view can be seen in Figure 10.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 23

Figure 9: Infrastrutcture hardware components

Figure 10: Virtual machines running in physical server

The Druid Raemis core is installed in a single-node K8s cluster, in one of the bare-metal sleds of the EP100.

 Kubernetes support guidelines

For access to the Aveiro testbed K8s platform, the experimenters need to use a VPN (OpenVPN), and request the
access to ALB IT department. This VPN provides access to the necessary VMs/containers.

Next, the experimenters need to access the repository VM, with the credentials (user/pass) generated by ALB (in
the first access, the experimenters should change the password). In this VM they can use the K8s cluster through
kubectl, or copy the K8s config file to use remotely. This config file is unique per experimenter company, and
uses a specific namespace with RBAC rules for isolation/security purposes.

Experimenters are recommended to use the internal project GitLab10 which includes a private Docker registry
(registry.5gepicentre.eu), but remote registries can also be allowed, if needed.

At this moment the experimenters are able to use kubectl to deploy their applications on the K8s cluster, make
updates, check the status and remove them.

Finally, experimenters are requested to follow the K8s best practices, and consult the official K8s documentation
[7].

10 5GEPICENTRE GitLab: https://gitlab.5gepicentre.eu/

https://gitlab.5gepicentre.eu/

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 24

3.3 Barcelona testbed (CTTC)

The K8s infrastructure is deployed using Kubespray in 5G-EPICENTRE for hosting experimentation tools. Ku-
bespray is an automated deployment tool that provides a highly available cluster, composable attributes, and
support for most popular Linux distributions. It is a collection of Ansible playbooks, inventory, provisioning tools,
and domain knowledge for deploying, configuring, and managing K8s clusters. The infrastructure consists of mas-
ter nodes, each with a set of worker nodes, as shown in Figure 11. For each use case, there is a separate set of
master and worker nodes with the number of worker nodes varying from one to three. An example of K8s infra-
structure with a master and three worker nodes illustrated in Figure 11.

Figure 11: Representation of the CTTC K8s structure

The K8s cluster is created under the Testbed instance concept to provide isolated Cloud/Multi-Access Edge Com-
puting (MEC) testing and validation environments. Virtualisation is essential, since this infrastructure is shared
among multiple projects and researchers. The main virtualisation technology used is LXD, which enables the
creation of a virtualisation experimental environment called Testbed Instance (TI). VNFs are generally orches-
trated by Open-Source MANO (OSM), using K8s and/or OpenStack as the Virtualised Infrastructure Manager
(VIM). However, this can be adapted depending on the testing needs. The computing resources managed by
these VIMs are either VMs or Docker containers. Karmada is used to implement the multi-domain K8s clusters.

 Infrastructure software components

This Section provides more details about the infrastructure software components. Implemented tools in 5G-
EPICENTRE K8s include: (1) Kubectl; (2) Persistent Volume; (3) MetalLB LoadBalancer; and (4) NGINX Ingress Con-
troller. Persistent Volume11 is long-term storage in a K8s cluster. It exists beyond containers, pods, and nodes. A
pod uses a persistent volume claim to get read and write access to the persistent volume. To create persistent

11 https://kubernetes.io/docs/concepts/storage/persistent-volumes/

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 25

volumes, we use NFS, which is a shared filesystem accessed over the network. The NFS must already exist, and
K8s does not run the Network File System (NFS); instead, pods access it. NFS is useful for two reasons: it allows
data to persist beyond the life of a pod, and it enables multiple pods to access the same filesystem at the same
time. In our K8s cluster, we have implemented an NFS server on the master node. The rest of the tools mentioned
above, were described in detail in subsection 3.1.1.

 5G network

The 5G Core (and RAN) can be deployed either through commercial products, i.e., the Amarisoft CallBox, or
through open-source solutions integrated with Universal Software Radio Peripherals (USRPs).

More specifically, the CTTC testbed consists of a variety of 5G Core, namely:

 Amarisoft 5G Core, as part of the Callbox.

 Containerised Open5GS.

 Containerised OpenAirInterface.

The FR1 band is supported in stand-alone (SA) and non-stand-alone (NSA) scenarios. Additionally, 4G scenarios
can as well be deployed. The testbed features come from the Amarisoft RAN, as part of the Callbox equipment:

 One Amarisoft Callbox Ultimate.

 Two Amarisoft Callbox Mini.

 Hardware approach

The CTTC 5G testbed allows the creation of multiple TIs. Each TI is an NFV ecosystem. This allows sharing the
same testbed physical infrastructure and building different subtestbeds according to the experimentation needs
of each use case. A TI may include:

 Computing capabilities (Central Processing Unit [CPU], Graphics Processing Unit [GPU], edge, cloud).

 5G network capabilities (including UEs, RAN, and core).

 Other devices.

A global view of the CTTC 5G testbed is presented in Figure 12.

The left part corresponds to generic purpose servers over which the testbed instances deploy their VMs or con-
tainers. Though the configuration of this part is flexible, this component can be seen as the cloud data centre of
the scenario under evaluation. The lower part corresponds to edge servers, which may be either generic purpose
servers, or those equipped with GPUs for offering services to demanding URLLC applications (e.g., Virtual Reality
[VR]).

Since the goal is to create TIs on top of the shared infrastructure, LXD is exploited to create system containers
and VMs that are part of the NFVI infrastructure of the TI. Inside each TI, the user can decide the MANO stack to
deploy, which may include, for instance, OSM, K8s and Openstack.

There are multiple flavours of 5G mobile network that can be used, consisting of combinations of commercial
and open-source hardware and software. Multiple real and emulated 5G devices can also be used in each testbed
instance. The following sections describe in more detail each component. For monitoring purposes, Prometheus
is used.

The basic computing capabilities consist of 10 servers with a total of 456 CPU cores, 2632 GB memory, 58 TB
storage, and 6 GPUs distributed in two servers. For edge computing, there are 10 machines with a total of 40
cores, 147 GB memory, and 2.5 TB storage. It should be noted that the available GPUs can be virtualised for
containers/VMs.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 26

Figure 12: CTTC 5G testbed

Figure 13 shows the CTTC 5G testbed including the 5G network equipment. Additionally, more servers, network-
ing, and measurement equipment can be made available from another testbed of the Services as Networks (SaS)
group, namely the EXTREME Testbed® (Figure 14).

Figure 13: Part of the CTTC 5G testbed showing some of the servers and the Amarisoft 5G equipment

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 27

Figure 14: Part of the CTTC 5G testbed. EXTREME Testbed ®

 Example use cases

Figure 15 shows two TIs for the use cases deployed by NEM (UC2) and ORAMA (UC8) in the CTTC 5G testbed,
and two TIs used to deploy other components of the platform, namely the Publisher and RabbitMQ broker, and
the Analytics Engine.

Figure 15: Testbed Instances for the use cases and other components of the CTTC 5G Barcelona testbed

 Kubernetes support guidelines

The CTTC 5G testbed provides access to the different Tis, including the K8s clusters and other components with
a VPN using an OpenVPN server. Once the user is connected to the VPN, they have administrative rights to their
own K8s cluster.

The deployment of the use cases is done with the kubectl command-line tool, or with the Helm chart tool with
the YAML configuration files. The testbed has access to Docker image repositories. The users can access the
internal project GitLab repository (gitlab.5gepicentre.eu), the CTTC internal GitLab repository (gitlab.cttc.cat), or
any external repository.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 28

3.4 Berlin testbed (HHI)

A dedicated server is being installed in HHI testbed, which is in the same network infrastructure as the 5G Core.
This enables the server to extract all the useful information regarding the deployed use cases directly from the
core to process further. For processing, different VMs are deployed in the server, and are managed by VMWare.
Docker CE is used to create Docker images, which are managed under K8s. A K8s cluster is composed of such 3
VMs, which are distributed as 1 master and 2 worker VMs. A message broker, namely RabbitMQ, is integrated
in the cluster as a component which takes information (or message) in JavaScript Object Notation (JSON) format.
This message is further sent to the publisher by the RabbitMQ. For monitoring purposes, Prometheus is utilised
(Figure 16).

Figure 16: K8s structure at 5G Berlin testbed

It has proven successful that the names of the use case owners are used for the namespaces in the use cases we
tested. This makes it easier to distinguish and manage the different use cases.

Used K8s namespases are listed in Table 3.

Table 3: Namespaces in the HHI testbed

namespace Usage

default components, services for RabbitMQ

rabbitmq-system RabbitMQ cluster operator

hhi, youbiquo components, services for use cases

kube-flannel, kube-node-lease, kube-public, kube-system standard components, services of kubernetes

local-path-storage persistent volume

metallb-system Load Balancer, direct access to services

monitoring Prometheus

nginx-ingress Load Balancer, routing to different services

For more information about components and services see section 3.1.1.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 29

 5G network

In the HHI 5G testbed, a 5G Core from ng4T12 is used in SA mode. The 5G Core runs on its own physical server,
for which there is currently no container solution. The core is connected to the RAN system.

As can be seen in Figure 17, the topology of the 5G Core includes the Access and Mobility Management Function
(AMF), Session Management Function (SMF), User Plane Function (UPF) and Unified Data Management (UDM).

Figure 17: Topology of 5G core from NG4T

The gNB is connected to the core via the N2 control plane and N3 user plane interfaces. The connection to the
application server and the Internet gateway is made via the N6 interface.

It is a 5G Core emulator licensed to connect up to 25 gNBs and supports up to 100 UEs. Currently, the core is set
to support two Public Land Mobile Networks (PLMNs), each with its own network slice.

 Hardware approach

The hardware implementation consists of different hardware components (Figure 18-Figure 20), namely:

 Macro Cell
o RRH Nokia 5G SA, AirScale AEQE 64T64R (on the roof top).
o gNB Nokia 5G SA, ABIL BBMOD-1.

 5G Core from ng4T, running on Dell Server R440.

 Componet interconnection switch Dell EMC S5224F-ON Switch.

 FortiGate FG-200F.
o Internet gateway.
o VPN access.
o Firewall.
o Router.

 Application server Dell PowerEdge R440 Server.

12 https://www.ng4t.com/

https://www.ng4t.com/

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 30

o managed by VMWare.
o K8s cluster running on VMs.

 Kubernetes support guidelines

If an experimenter wants to deploy a use case on the K8s cluster of the 5G Berlin testbed, a number of prepara-
tory steps need to be taken.

Figure 18: Network architecture of 5G Berlin testbed

Figure 19: Nokia gNB and Nokia RRH

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 31

Figure 20: 5G Core, Application server, FortiGate

First, the preparation of configuration files is required: In order to deploy an application on a K8s cluster, config-
uration files must be created, that describe the various resources that are to be deployed. These resources in-
clude pods, services such as LoadBalancer, volumes and secrets/tokens used. The resource requirements (like
CPU and memory space) should be listed in the pods’ configuration.

Secondly, a deployment configuration file must be created: The deployment configuration file describes how the
pods and associated resources should be provisioned in the cluster. This file should contain information, such as
the number of replicas to be provisioned and the container image to be used; usually this file is expressed in a
YAML format.

Third, the application should be deployed in the cluster. To do this, the experimenter loads its container images
and configuration file into the internal project GitLab, which contains a private Docker registry (registry.5gepi-
centre.eu) or provides access to its own repository.

For the deployment of the container image, there are two possibilities. First, the 5G Berlin testbed operator
provides the application on the K8s cluster after consultation with the experimenter. Secondly, the experimenter
receives external VPN access to the required VM, which they can access with the credentials (user/password)
generated by HHI. The application can be deployed to the cluster with kubectl, the K8s command-line tool. It is
then advisable to check the deployment status. Once the application has been deployed, the status can be
checked with kubectl commands.

If the application is to be updated after deployment, updates can be performed to fix bugs or add new features.
The updates are performed by creating a new version of the deployment configuration file and updating the
pods and other related resources.

 5G testbed management

The infrastructure is shared by several projects and researchers, so a coordinated agreement among the projects
by a scheduler is necessary (planned within the project architecture, see D1.3 and D1.4). The individual network
components are managed via a dedicated management Virtual Local Area Network (VLAN), which can be ac-
cessed via limited VPN access. The VMs on the application server managed by VMWare and works with the OS
Ubuntu 20.04. In addition to the 3 VMs for the K8s cluster, further VMs areVM for an iPerf server, VM for the
publisher, etc.

The components and services required for the use cases are only available to project partners of the 5G-EPICEN-
TRE project.

For performance measurements with UC3, the 5G TrafficManager, remote-iPerf-agent and Publisher from UMA
were used. For this purpose, measurement data was forwarded to the Publisher via the RabbitMQ broker and
Prometheus. This can also be used for other use cases.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 32

4 Conclusions

This document is the deliverable related to Task T2.1 “Cloud-native infrastracture”. This deliverable presents
details regarding the cloud-native transformation of the infrastructure for each testbed used in the project.

The document starts by presenting the benefits of cloud-native transformation in 5G networks in general and
then provides details regarding the approach followed by each testbed in order to cloud nativise their infrastruc-
ture and to support K8s. The infrastructure software and hardware components and details such as the used
monitoring system are also presented. A special emphasis is given to the presentation of guidelines for access to
the K8s platforms: a sub-section is dedicated to every testbed briefly describing the steps that have to be taken
when an experimenter wants to perform a deployment on the specific testbed.

The cloud-native transformation of the testbeds will benefit the UCs and the PPDR verticals by providing better
performance and faster instantiation times, better availability and reliability. It will improve the agility of the 5G
network and will support the development and deployment of 5G services and applications.

D2.2 Cloud-native infrastracture

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 33

References

[1] 5G-PPP Software Network Working Group. (2020). Cloud Native and 5G Verticals’ services. https://5g-
ppp.eu/wp-content/uploads/2020/02/5G-PPP-SN-WG-5G-and-Cloud-Native.pdf

[2] 5G-PPP Software Network Working Group. (2019). Cloud-Native and Verticals’ services. https://5g-
ppp.eu/wp-content/uploads/2019/09/5GPPP-Software-Network-WG-White-Paper-2019_FINAL.pdf

[3] Fraunhofer FOKUS. (n.d.). Open5GCore. Retrieved March 1, 2023, from https://www.open5gcore.org/
[4] DRUID. (n.d.). Raemis™ – Cellular Network Technology. Retrieved March 1, 2023, from https://www.druid-

software.com/raemis-cellular-network-technology/
[5] ASOCS. (n.d.). ASOCS. Retrieved March 1, 2023, from www.asocscloud.com
[6] ASOCS. (n.d.). ASOCS’ CYRUS 2.0 Delivers Flexible 4G/5G Indoor and Macro vRAN. Retrieved March 1, 2023,

from https://asocscloud.com/wp-content/uploads/2019/10/asocs_intel-network-builders_solution-brief_1
0_2019.pdf

[7] Kubernetes. (2023, March 1). Kubernetes Documentation. Retrieved March 1, 2023, from https://kuber-
netes.io/docs/home/

https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-SN-WG-5G-and-Cloud-Native.pdf
https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-SN-WG-5G-and-Cloud-Native.pdf
https://5g-ppp.eu/wp-content/uploads/2019/09/5GPPP-Software-Network-WG-White-Paper-2019_FINAL.pdf
https://5g-ppp.eu/wp-content/uploads/2019/09/5GPPP-Software-Network-WG-White-Paper-2019_FINAL.pdf
https://www.open5gcore.org/
https://www.druidsoftware.com/raemis-cellular-network-technology/
https://www.druidsoftware.com/raemis-cellular-network-technology/
http://www.asocscloud.com/
https://asocscloud.com/wp-content/uploads/2019/10/asocs_intel-network-builders_solution-brief_10_2019.pdf
https://asocscloud.com/wp-content/uploads/2019/10/asocs_intel-network-builders_solution-brief_10_2019.pdf
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

